4 research outputs found

    Low-dose benzene exposure monitoring of oil refinery workers: inhalation and biomarkers

    Get PDF
    Airborne benzene in workplaces has progressively decreased due to preventive actions and the redesigning of facility processes. Professionals who assess occupational exposure should select techniques to detect benzene levels comparable to ambient air exposure. Thus, sensitive biomarkers are needed to discriminate the effects of confounding factors, such as smoking or sorbic acid (SA). In order to identify sensitive biomarkers and to study their correlation with confounding factors, 23 oil refinery workers were enrolled in the study; their airborne benzene exposures and biomarkers were monitored. Urinary benzene (U-B), t,t-muconic acid (t,t-MA), and S-phenylmercapturic acid (SPMA) were quantified. Urinary cotinine (U-C) and t,t-sorbic acid (t,t-SA) were evaluated to flag smoking and SA intake, respectively. The benzene measured in personal inhalation sampling ranged from 0.6 to 83.5 (median 1.7) µg/m3. The concentration range of the biomarkers, U-B, t,t-MA, and SPMA, were 18–4893 ng/m3, <10–79.4 µg/g creatinine, and <0.5–3.96 µg/g creatinine, respectively. Pearson tests were carried out; the best correlations were between airborne benzene and U-B (µg/L r = 0.820, p < 0.001) and between benzene and SPMA (g/L r = 0.812, p < 0.001), followed by benzene and t,t-MA (mg/L r = 0.465, p = 0.039). From our study, U-B and SPMA result to be the most reliable biomarkers to assess the internal number of low doses of benzene exposure, thanks to their specificity and sensitivity

    Stellar Population Survey Using 4MOST (4MOST-StePS)

    No full text
    Galaxy spectra encode in their continuum and absorption/emission features a wealth of information on galaxy physics, mass assembly and chemical enrichment history. The 4MOST-StePS survey will collect high-quality spectra (with a median signal-to-noise ratio of about 30 Å–1, and resolution R ~ 5000) for a sample of about 3300 galaxies brighter than IAB = 20.5 within the RA-Dec-z footprint of the WAVES-Deep survey. These spectra will provide a precise empirical description of the evolutionary path of massive galaxies in the intermediate redshift range (0.3 < z < 0.7) between the LEGA-C and SDSS surveys. The locations of the galaxies within the cosmic web, unveiled by WAVES-Deep, will disclose the connection between galaxy properties and environment, down to the scales of galaxy pairs
    corecore