4 research outputs found

    Metabolomics in Team-Sport Athletes: Current Knowledge, Challenges, and Future Perspectives

    Get PDF
    Metabolomics is a promising tool for studying exercise physiology and exercise-associated metabolism. It has recently been defined with the term "sportomics" due to metabolomics' capability to characterize several metabolites in several biological samples simultaneously. This narrative review on exercise metabolomics provides an initial and brief overview of the different metabolomics technologies, sample collection, and further processing steps employed for sport. It also discusses the data analysis and its biological interpretation. Thus, we do not cover sample collection, preparation, and analysis paragraphs in detail here but outline a general outlook to help the reader to understand the metabolomics studies conducted in team-sports athletes, alongside endeavoring to recognize existing or emergent trends and deal with upcoming directions in the field of exercise metabolomics in a team-sports setting

    Influence of Upper and Lower Body Anthropometric Measures on An Aggregate Physical Performance Score in Young Elite Male Soccer Players: A Case Study

    No full text
    Background: The present study aimed to determine the association of anthropometry-based characteristics with an aggregate score (AS) of physical performance in young elite soccer players. Methods: Sixteen under 15 elite players were enrolled. Among numerous anthropometrics variables, upper arm contracted (UACC) and relaxed circumference (UARC), corrected arm muscle area (AMAcorr), arm muscle circumference (AMC), thigh muscle circumference (TMC) and suprapatellar girths were also employed in this study. Players’ physical performance was assessed by the change of direction (COD), 10 m and 20 m sprint, countermovement jump (CMJ) test, sprint with 90∘ turns (with ball), and yo-yo intermittent recovery test level 1 (Yo-Yo IRT1). The AS was computed by Principal Components Analysis technique with one component on normalized performance results. A stepwise regression analysis was conducted to assess potential association between anthropometry-based variables and AS. Results: Large negative correlations (r < –0.68) of AS with UACC, UARC, AMAcorr, and AMC were detected. UACC and TMC permits to accurately estimate AS explaining 60% of the total variance (p < 0.001). Conclusions: These findings demonstrated the importance of including anthropometry-based measures of both upper and lower body to the physical performance potential expressed by AS in elite youth soccer

    Regional Bioelectrical Phase Angle Is More Informative than Whole-Body Phase Angle for Monitoring Neuromuscular Performance: A Pilot Study in Elite Young Soccer Players

    No full text
    Background: The objective of this study was to investigate the association between regional and total phase angle (PhA) with lower-body neuromuscular performance in young elite soccer players. Methods: Sixteen elite male soccer players (14.3 &plusmn; 1.0 years) participated in this study. Lower (LPhA)- and upper (UPhA)-hemisome PhA together with whole-body PhA (WBPhA) were measured by a bioelectrical-impedance analysis (BIA), while appendicular arm and leg lean soft tissue (ALST and LLST, respectively) were estimated. Urine osmolarity (UOsm) and urine-specific gravity (USG) were also considered. Sprints over 10 m and 20 m and countermovement jump (CMJ) tests were employed to evaluate neuromuscular performance. Results: LPhA (p = 0.003) and UOsm (p = 0.012) explained 62% of the variance in the 10 m sprint. UOsm (p = 0.001) and both LPhA (p &lt; 0.001) and WBPhA (p = 0.024) explained 81% of the total variance in the 20 m sprint. The CMJ height was affected by LPhA (p &lt; 0.001) and UOsm (p = 0.024), which overall explained 68% of its variance (p &lt; 0.05), while 93% of the CMJ power variance was explained by LPhA (p &lt; 0.001), ALST (p &lt; 0.001), and WBPhA (p = 0.011). Conclusions: Regional PhA is a relevant and non-invasive tool to monitor lower-body neuromuscular performance in elite youth soccer. Specifically, LPhA may be favored over WBPhA as more informative

    How Do Football Playing Positions Differ in Body Composition? A First Insight into White Italian Serie A and Serie B Players

    No full text
    The present study aimed to investigate how playing positions differ in specific body composition variables in professional soccer players with respect to specific field zones and tactical lines. Five hundred and six Serie A and B professional soccer players were included in the study and analyzed according to their playing positions: goalkeepers (GKs), central backs (CBs), fullbacks (FBs), central midfielders (MIDs), wide midfielders (WMs), attacking midfielders (AMs), second strikers (SSs), external strikers (ESs), and central forwards (CFs), as well as their field zones (central and external) and tactical lines (defensive, middle, and offensive). Anthropometrics (stature and body mass) of each player were recorded. Then, body composition was obtained by means of bioelectric impedance analysis (BIA). GKs and CFs were the tallest and heaviest players, with no differences from each other. Likewise, GKs and CFs, along with CBs, were apparently more muscular (for both upper and lower limbs) and fatter at the same time compared with the other roles. Overall, players of the defensive line (CBs and FBs), along with those playing in central field zones (CBs, MIDs, AMs, SSs, and CFs), were significantly (p < 0.05) superior in almost all anthropometric and body composition variables than those of middle and offensive line and external zones, respectively
    corecore