3 research outputs found

    Sustainability and Industry 4.0: Definition of a Set of Key Performance Indicators for Manufacturing Companies

    Get PDF
    Today, sustainability represents a fundamental concept to be developed and implemented in any industrial context. Therefore, it is essential to be able to measure sustainability performance by proper indicators, along the entire lifecycle and the value chain, considering environmental, economic, and social impacts. Moreover, every manufacturing company should have a specific measuring framework to calculate all the specific parameters. In this direction, the modern digital transition and Industry 4.0 (I4.0) technologies are proposing to transform human–machine relations, with a significant impact on social and organizational aspects. At the same time, digitization can help companies to define and implement sustainability by correlating production with proper evaluation metrics. The aim of this research is to provide a complete overview of sustainability Key Performance Indicators (KPIs) based on the Triple Bottom Line concept, referring to the three sustainability areas. Such an overview can be used by companies to set their specific KPIs and metrics to measure their sustainability level, according to their needs

    Design Guidelines Towards 4.0 HMIs: How to Translate Physical Buttons in Digital Buttons

    No full text
    The fourth industrial revolution (known as Industry 4.0) has simplified the access to new smart technologies, which are even more adopted by companies in their manufacturing machines. These technologies (e.g., Internet of Things) open new evolutionary scenarios for industries and the whole production process, such as the use of big data for production process optimization. At the same time, also a Human-Machine Interface (HMI) evolution is required to manage and effectively exploit the new machines advantages. Currently, different industrial HMIs are still physical based (e.g., buttons, levers) and do not properly respond to the new opportunities offered by the 4.0 technologies, limiting the whole production evolution. The HMIs’ evolution requires a proper design approach that considers the new machine possibilities (e.g., real time data analysis), the new interaction requirements and the users’ needs in the new work scenario. However, a lack of indications to guide this redesign process emerged. In this paper is presented a list of design guidelines conceived during a project regarding the HMI redesign of an automatic production line. Specifically, the project focuses on the translation of physical buttons to digital ones in a graphic interface. The case study brought out that there are many aspects to consider during the design process toward new 4.0 HMIs, and specific methodologies are necessary to develop intuitive and clear HMIs. Providing this applicative example, the paper aims to fill the current gap of indication to face the HMIs evolution and redesign. In particular, the developed guidelines are described to make clear how to adopt them to solve similar use cases and as a support for the design teams
    corecore