4,748 research outputs found

    Drell-Yan plus missing energy as a signal for extra dimensions

    Get PDF
    We explore the search sensitivity for signals of large extra dimensions at hadron colliders via the Drell-Yan process pp -> l+ l- + E_T(miss) X (l = e,mu) where the missing transverse energy is the result of escaping Kaluza-Klein gravitons. We find that one is able to place exclusion limits on the gravity scale up to 560 GeV at the Fermilab Tevatron, and to 4.0 (3.3) TeV at the CERN LHC, for n = 3 (4) extra dimensions.Comment: 5 pages, 2 PS figs, revised verseion to be published in Physics Letters

    Why the Water Bridge does not collapse

    Full text link
    In 2007 an interesting phenomenon was discovered: a thread of water, the so-called water bridge (WB), can hang between two glass beakers filled with deionized water if voltage is applied to them. We analyze the available explanations of the WB stability and propose a completely different one: the force that supports the WB is the surface tension of water and the role of electric field is not to allow the WB to reduce its surface energy by means of breaking into separate drops.Comment: 4 pages, 3 figure

    Dynamical Supersymmetry Breaking and Low Energy Gauge Mediation

    Full text link
    Dynamical breaking of supersymmetry was long thought to be an exceptional phenomenon, but recent developments have altered this view. A question of great interest in the current framework is the value of the underlying scale of supersymmetry breaking. The "little hierarchy" problem suggests that supersymmetry should be broken at low energies. Within one class of models, low energy breaking be achieved as a consequence of symmetries, without requiring odd coincidences. The low energy theories are distinguished by the presence or absence of RR symmetries; in either case, and especially the latter one often finds modifications of the minimal gauge-mediated spectrum which can further ameliorate problems of fine tuning. Various natural mechanisms exist to solve the μ\mu problem in this framework.Comment: 20 pages (minor change in referencing

    Phenomenological consequences of supersymmetry with anomaly-induced masses

    Get PDF
    In the supersymmetric standard model there exist pure gravity contributions to the soft mass parameters which arise via the superconformal anomaly. We consider the low-energy phenomenology with a mass spectrum dominated by the anomaly-induced contributions. In a well-defined minimal model we calculate electroweak symmetry breaking parameters, scalar masses, and the full one-loop splitting of the degenerate Wino states. The most distinctive features are gaugino masses proportional to the corresponding gauge coupling beta-functions, the possibility of a Wino as the lightest supersymmetric particle, mass degeneracy of sleptons, and a very massive gravitino. Unique signatures at high-energy colliders include dilepton and single lepton final states, accompanied by missing energy and displaced vertices. We also point out that this scenario has the cosmological advantage of ameliorating the gravitino problem. Finally, the primordial gravitino decay can produce a relic density of Wino particles close to the critical value.Comment: 26 pages, 7 figures, LaTe

    Gravitational Scattering in the ADD-model Revisited

    Full text link
    Gravitational scattering in the ADD-model is studied and it is argued that no cut-off is needed for the exchange of virtual Kaluza--Klein modes. By introduction of a small coordinate in the extra dimensions a unique form of the Kaluza--Klein-summed propagator is found for an odd number of extra dimensions. The matrix element corresponding to this propagator can also (as opposed to the cut-offed version) be Fourier transformed to position space, giving back the extra-dimensional version of Newton's law. For an even number of extra dimensions the propagator is found by requiring that Newton's law should be recovered

    Phase structure of the N=1 supersymmetric Yang-Mills theory at finite temperature

    Full text link
    Supersymmetry (SUSY) has been proposed to be a central concept for the physics beyond the standard model and for a description of the strong interactions in the context of the AdS/CFT correspondence. A deeper understanding of these developments requires the knowledge of the properties of supersymmetric models at finite temperatures. We present a Monte Carlo investigation of the finite temperature phase diagram of the N=1 supersymmetric Yang-Mills theory (SYM) regularised on a space-time lattice. The model is in many aspects similar to QCD: quark confinement and fermion condensation occur in the low temperature regime of both theories. A comparison to QCD is therefore possible. The simulations show that for N=1 SYM the deconfinement temperature has a mild dependence on the fermion mass. The analysis of the chiral condensate susceptibility supports the possibility that chiral symmetry is restored near the deconfinement phase transition.Comment: 26 pages, 12 figure

    PeV-Scale Supersymmetry

    Full text link
    Although supersymmetry has not been seen directly by experiment, there are powerful physics reasons to suspect that it should be an ingredient of nature and that superpartner masses should be somewhat near the weak scale. I present an argument that if we dismiss our ordinary intuition of finetuning, and focus entirely on more concrete physics issues, the PeV scale might be the best place for supersymmetry. PeV-scale supersymmetry admits gauge coupling unification, predicts a Higgs mass between 125 GeV and 155 GeV, and generally disallows flavor changing neutral currents and CP violating effects in conflict with current experiment. The PeV scale is motivated independently by dark matter and neutrino mass considerations.Comment: 5 RevTex page

    Contaminants in Land-Applied Biosolids: Characterization and Modeling of Fate and Transport During Rainfall Events, and Determination of Effects of Triclocarban on a Freshwater Mudsnail

    Full text link
    Studies are described in which the fate and transport of contaminants in landapplied biosolids was characterized via direct measurements and then modeled successfully. Additionally, the effects of one such contaminant, triclocarban (TCC), were investigated in a freshwater mudsnail. Rainfall simulations were conducted on soil plots amended with biosolids. Surface runoff and leachate was collected and analyzed for the endocrine disrupting chemicals (EDCs) bisphenol A, 17α-ethynylestradiol, triclocarban, triclosan, octylphenol, and nonylphenol; sixteen metals; and estrogenic activity via the ERCALUX bioassay. Triclosan, nickel, and copper were detected at levels that might pose risk to aquatic life, though levels of metals in the biosolids were well below regulatory limits. ER-CALUX results were mostly explained by background bisphenol A contamination and octylphenol, though unknown contributors and/or matrix effects were also found. An existing model, Groundwater Loading Effects of Agricultural Management Systems (GLEAMS), was modified to include addition of a biosolids phase with labile organic carbon (distinct from soil organic carbon), and was used to predict the fate and transport of trace organic contaminants from land-applied biosolids. The model was calibrated using existing data from literature studies, including experiments described in above, and showed good agreement for acetaminophen, ibuprofen, triclosan, triclocarban, and estrone with reasonable input parameters. It was then applied to various theoretical scenarios using chemicals of varied properties to examine the effects of KOC and half-life, application date, and application method (surface spreading vs. incorporation) on long-term chemical losses. The effects of TCC were studied in the freshwater mudsnail Potamopyrgus antipodarum. After 4 weeks exposure, environmentally relevant TCC concentrations of 1.6 to 10.5 μg/L resulted in statistically significant increases in the number of unshelled embryos, while 0.2, 1.6, and 10.5 μg/L exposures significantly increased numbers of shelled embryos. The lowest observed effect concentration (LOEC) was 0.2 μg/L, the no observed effect concentration (NOEC) was 0.05 μg/L, and the median effective concentration (EC50) for unshelled effects was 2.5 μg/L. Results indicate that TCC may be causing reproductive effects in the environment. Furthermore, environmental risk from a new class of EDCs is both qualitatively and quantitatively similar to risk from existing classes of EDCs

    Quark-antiquark pair production in space-time dependent fields

    Full text link
    Fermion-antifermion pair-production in the presence of classical fields is described based on the retarded and advanced fermion propagators. They are obtained by solving the equation of motion for the Dirac Green's functions with the respective boundary conditions to all orders in the field. Subsequently, various approximation schemes fit for different field configurations are explained. This includes longitudinally boost-invariant forms. Those occur frequently in the description of ultrarelativistic heavy-ion collisions in the semiclassical limit. As a next step, the gauge invariance of the expression for the expectation value of the number of produced fermion-antifermion pairs as a functional of said propagators is investigated in detail. Finally, the calculations are carried out for a longitudinally boost-invariant model-field, taking care of the last issue, especially.Comment: 32 pages, 8 figures, revised versio
    • …
    corecore