91 research outputs found
Supplementary Material for: Long-Term Outcomes in Patients with Very-Early Onset Autosomal Dominant Polycystic Kidney Disease
<i>Background:</i> Long-term clinical outcomes in children with very-early onset (VEO; diagnosis in utero or within the first 18 months of life) autosomal dominant polycystic kidney disease (ADPKD) are currently not well understood. We conducted a longitudinal retrospective cohort study to assess the association between VEO status and adverse clinical outcomes. <i>Methods:</i> Seventy patients with VEO-ADPKD matched (by year of birth, sex and race/ethnicity) to 70 patients with non-VEO-ADPKD who participated in research at the University of Colorado were studied. Kaplan-Meier survival analysis was performed. The predictor was VEO status, and outcomes were progression to end-stage renal disease (ESRD), development of hypertension, progression to estimated glomerular filtration rate (eGFR <90 ml/min/1.73 m2), glomerular hyperfiltration (eGFR ≥140 ml/min/1.73 m2) and height-adjusted total kidney volume (htTKV) measured by MRI ≥600 ml/m. <i>Results:</i> Median follow-up was until 16.0 years of age. There were only 4 ESRD events during the follow-up period, all in the VEO group (p < 0.05). VEO patients were more likely to develop hypertension (hazard ratio, HR 3.15, 95% CI 1.86-5.34; p < 0.0001) and to progress to eGFR <90 ml/min/1.73 m2 (HR 1.97, 95% CI 1.01-3.84; p < 0.05) than non-VEO patients. There was no difference between groups in the development of glomerular hyperfiltration (HR 0.89, 95% CI 0.56-1.42; p = 0.62). There were only 7 patients who progressed to htTKV ≥600 ml/m, 4 in the VEO group and 3 in the non-VEO group (p < 0.01). <i>Conclusions:</i> Several clinical outcomes are worse in patients with VEO-ADPKD compared to non-VEO ADPKD. Children with VEO-ADPKD represent a particularly high-risk group of ADPKD patients
PowerPoint Slides for: Long-Term Outcomes in Patients with Very-Early Onset Autosomal Dominant Polycystic Kidney Disease
<i>Background:</i> Long-term clinical outcomes in children with very-early onset (VEO; diagnosis in utero or within the first 18 months of life) autosomal dominant polycystic kidney disease (ADPKD) are currently not well understood. We conducted a longitudinal retrospective cohort study to assess the association between VEO status and adverse clinical outcomes. <i>Methods:</i> Seventy patients with VEO-ADPKD matched (by year of birth, sex and race/ethnicity) to 70 patients with non-VEO-ADPKD who participated in research at the University of Colorado were studied. Kaplan-Meier survival analysis was performed. The predictor was VEO status, and outcomes were progression to end-stage renal disease (ESRD), development of hypertension, progression to estimated glomerular filtration rate (eGFR <90 ml/min/1.73 m2), glomerular hyperfiltration (eGFR ≥140 ml/min/1.73 m2) and height-adjusted total kidney volume (htTKV) measured by MRI ≥600 ml/m. <i>Results:</i> Median follow-up was until 16.0 years of age. There were only 4 ESRD events during the follow-up period, all in the VEO group (p < 0.05). VEO patients were more likely to develop hypertension (hazard ratio, HR 3.15, 95% CI 1.86-5.34; p < 0.0001) and to progress to eGFR <90 ml/min/1.73 m2 (HR 1.97, 95% CI 1.01-3.84; p < 0.05) than non-VEO patients. There was no difference between groups in the development of glomerular hyperfiltration (HR 0.89, 95% CI 0.56-1.42; p = 0.62). There were only 7 patients who progressed to htTKV ≥600 ml/m, 4 in the VEO group and 3 in the non-VEO group (p < 0.01). <i>Conclusions:</i> Several clinical outcomes are worse in patients with VEO-ADPKD compared to non-VEO ADPKD. Children with VEO-ADPKD represent a particularly high-risk group of ADPKD patients
Recommended from our members
Numerical simulations of free-electron laser oscillators
A numerical simulation capability has been developed to model the physics and realistic design constraints of free electron laser oscillators driven by rf linear accelerators. Two computer codes have been written FELEX and FELP. The code FELP is a one spatial dimension code with essentially unlimited time or spectral resolution. The codes are complementary and their use is dependent upon the problem being addressed. The code FELP is used to model optical and electron micropulse structure, broadband noise, and the sideband instability. The code FELEX models accelerator generated electron beam distributions, the transport of these distributions through wigglers with misalignments and field errors, self-consistent interaction with the optical field, and propagation of the optical field through resonators with realistically modelled components. FELEX is routinely used to match resonator designs to the optical parameters of the electron beam, and used to investigate the physics of 3-D micropulse effects. Some details of the codes will be presented along with various examples of simulation results. 22 refs., 10 figs., 1 tab
- …