26 research outputs found

    Epidemiology, Pathology, Management and Open Challenges of Breast Cancer in Central Sudan: A Prototypical Limited Resource African Setting

    Get PDF
    Little is known about breast cancer in Sudan. According to the recent data published by the Khartoum Cancer Registry, breast cancer was the most common cancer among Sudanese women. Generally, breast cancer in native African women is characterized by young age at onset, occurrence in multiparous premenopausal patients, advanced stage at diagnosis, large tumor size, high‐grade and triple‐negative phenotype, with correspondingly poor prognosis. In Sudan, it was reported that about 70% of the women diagnosed with breast cancer were younger than 50 years old. We present here data from local and international publications as well as primary information from the National Cancer Institute in Wad Medani (one of the only two cancer hospitals of the country, both located in Central Sudan in Khartoum and Wad Medani). We provide an up‐to‐date situation analysis of breast cancer in Central Sudan as an example for an African reality and the various open challenges of breast cancer in a limited resource setting. A better understanding of breast cancer in black African women is of global relevance, as there is an alarming increase in breast cancer among young black women worldwide, and these patients have the lowest survival rates

    Integrative analysis of hereditary nonpolyposis colorectal cancer: The contribution of allele-specific expression and other assays to diagnostic algorithms

    Get PDF
    The identification of germline variants predisposing to hereditary nonpolyposis colorectal cancer (HNPCC) is crucial for clinical management of carriers, but several probands remain negative for such variants or bear variants of uncertain significance (VUS). Here we describe the results of integrative molecular analyses in 132 HNPCC patients providing evidences for improved genetic testing of HNPCC with traditional or next generation methods. Patients were screened for: germline allele-specific expression (ASE), nucleotide variants, rearrangements and promoter methylation of mismatch repair (MMR) genes; germline EPCAM rearrangements; tumor microsatellite instability (MSI) and immunohistochemical (IHC) MMR protein expression. Probands negative for pathogenic variants of MMR genes were screened for germline APC and MUTYH sequence variants. Most germline defects identified were sequence variants and rearrangements of MMR genes. Remarkably, altered germline ASE of MMR genes was detected in 8/22 (36.5%) probands analyzed, including 3 cases negative at other screenings. Moreover, ASE provided evidence for the pathogenic role and guided the characterization of a VUS shared by 2 additional probands. No germline MMR gene promoter methylation was observed and only one EPCAM rearrangement was detected. In several cases, tumor IHC and MSI diverged from germline screening results. Notably, APC or biallelic MUTYH germline defects were identified in 2/19 probands negative for pathogenic variants of MMR genes. Our results show that ASE complements gDNA-based analyses in the identification of MMR defects and in the characterization of VUS affecting gene expression, increasing the number of germline alterations detected. An appreciable fraction of probands negative for MMR gene variants harbors APC or MUTYH variants. These results indicate that germline ASE analysis and screening for APC and MUTYH defects should be included in HNPCC diagnostic algorithms

    Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition

    No full text
    The development of colorectal cancer (CRC) is a multistep process initiated by a benign polyp that has the potential to evolve into in situ carcinoma through the interactions between environmental and genetic factors. CRC incidence rates are constantly increased for young adult patients presenting an advanced tumor stage. The majority of CRCs arise from colonic adenomas originating from aberrant cell proliferation of colon epithelium. Endoscopic polypectomy represents a tool for early detection and removal of polyps, although the occurrence of cancers after negative colonoscopy shows a significant incidence. It has long been recognized that the aberrant regulation of Wingless/It (Wnt)/β-Catenin signaling in the pathogenesis of colorectal cancer is supported by its critical role in the differentiation of stem cells in intestinal crypts and in the maintenance of intestinal homeostasis. For this review, we will focus on the development of adenomatous polyps through the interplay between renewal signaling in the colon epithelium and reactive oxygen species (ROS) production. The current knowledge of molecular pathology allows us to deepen the relationships between oxidative stress and other risk factors as lifestyle, microbiota, and predisposition. We underline that the chronic inflammation and ROS production in the colon epithelium can impair the Wnt/β-catenin and/or base excision repair (BER) pathways and predispose to polyp development. In fact, the coexistence of oxidative DNA damage and errors in DNA polymerase can foster C>T transitions in various types of cancer and adenomas, leading to a hypermutated phenotype of tumor cells. Moreover, the function of Adenomatous Polyposis Coli (APC) protein in regulating DNA repair is very important as therapeutic implication making DNA damaging chemotherapeutic agents more effective in CRC cells that tend to accumulate mutations. Additional studies will determine whether approaches based on Wnt inhibition would provide long-term therapeutic value in CRC, but it is clear that APC disruption plays a central role in driving and maintaining tumorigenesis

    Targeting Wnt/β-Catenin Pathways in Primary Liver Tumours: From Microenvironment Signaling to Therapeutic Agents

    No full text
    Primary liver cancers (PLCs) are steadily increasing in incidence and mortality in the world. They have a poor prognosis due to their silent nature, late discovery and resistance to common chemotherapy. At present, there are limited treatment alternatives, and the understanding of PLC molecular aspects is essential to develop more efficient drugs and therapeutic surgical and loco-regional strategies. A clear causal link with liver damage, inflammation, and regeneration has been found in the occurrence of PLC over the last few decades. Physiologically, Wingless/It (Wnt)-β-catenin signaling plays a key role in liver development, metabolic zonation and regeneration. Loss of functional homeostasis of this pathway appears to be a major driver of carcinogenesis in the liver parenchyma. In the hepatic microenvironment, molecular deregulations that exceed the Wnt signaling biological capacity can induce tumor initiation and progression. Indeed, somatic mutations are identified in key components of canonical and non-canonical Wnt signaling and in PLCs and precancerous lesions. In this review, the altered functions of Wnt/β-catenin signaling are considered in human PLCs, with emphasis on hepatocellular carcinomas (HCC), cholangiocarcinomas (CCA) and hepatoblastomas (HB). Based on recent literature, we also focused on liver cancerogenesis through Wnt deregulation. An overview of preclinical and clinical studies on approved and experimental drugs, targeting the Wnt/β-catenin cascade in PLCs, is proposed. In addition, the clinical implication of molecule inhibitors that have been shown to possess activity against the Wnt pathway in association with conventional surgical and loco-regional therapies are reviewed

    Targeting Wnt/β-Catenin Pathways in Primary Liver Tumours: From Microenvironment Signaling to Therapeutic Agents

    No full text
    Primary liver cancers (PLCs) are steadily increasing in incidence and mortality in the world. They have a poor prognosis due to their silent nature, late discovery and resistance to common chemotherapy. At present, there are limited treatment alternatives, and the understanding of PLC molecular aspects is essential to develop more efficient drugs and therapeutic surgical and loco-regional strategies. A clear causal link with liver damage, inflammation, and regeneration has been found in the occurrence of PLC over the last few decades. Physiologically, Wingless/It (Wnt)-β-catenin signaling plays a key role in liver development, metabolic zonation and regeneration. Loss of functional homeostasis of this pathway appears to be a major driver of carcinogenesis in the liver parenchyma. In the hepatic microenvironment, molecular deregulations that exceed the Wnt signaling biological capacity can induce tumor initiation and progression. Indeed, somatic mutations are identified in key components of canonical and non-canonical Wnt signaling and in PLCs and precancerous lesions. In this review, the altered functions of Wnt/β-catenin signaling are considered in human PLCs, with emphasis on hepatocellular carcinomas (HCC), cholangiocarcinomas (CCA) and hepatoblastomas (HB). Based on recent literature, we also focused on liver cancerogenesis through Wnt deregulation. An overview of preclinical and clinical studies on approved and experimental drugs, targeting the Wnt/β-catenin cascade in PLCs, is proposed. In addition, the clinical implication of molecule inhibitors that have been shown to possess activity against the Wnt pathway in association with conventional surgical and loco-regional therapies are reviewed

    Development of a SPE-HPLC-PDA Method for the Quantification of Phthalates in Bottled Water and Their Gene Expression Modulation in a Human Intestinal Cell Model

    No full text
    Phthalates are ubiquitous pollutants that are currently classified as endocrine disruptor chemicals causing serious health problems. As contaminants of food and beverages, they come into contact with the epithelium of the intestinal tract. In this work, a SPE-HPLC-PDA method for the determination of phthalates in water from plastic bottles was developed and validated according to the food and drug administration (FDA) guidelines. A chromatographic separation was achieved using a mobile phase consisting of ammonium acetate buffer 10 mM pH 5 (line A) and a mixture of methanol and iso-propanol (50:50 v/v, line B) using gradient elution. Several SPE cartridges and different pH values were investigated for this study, evaluating their performance as a function of recovery. Among these parameters, pH 5 combined with the SPE sep pack C18 cartridge showed the best performance. Finally, the proposed method was applied to the analysis of real samples, which confirmed the presence of phthalates. A colonic epithelial cell model was used to evaluate the effects of these phthalates at the concentrations found in water from plastic bottles. In cells exposed to phthalates, the increased expression of factors, which control the signaling pathways necessary for intestinal epithelium homeostasis, inflammatory response, and stress was detected. The proposed method falls fully within the limits imposed by the guidelines with precision (RSD%) below 7.1% and accuracy (BIAS%) within −4.2 and +6.1

    Oxidative stress induces Wnt canonical/non-canonical pathways modulation in colon cancer cell models

    No full text
    BACKGROUND-AIM. Increased reactive oxygen species (ROS) levels play critical roles in chronic inflammation, and predispose to colon carcinogenesis. Wnt signaling is essential for gut morphogenesis, tissue homeostasis and self-renewal, but its aberrant activation may drive the colorectal cancer (CRC). The ROS production seems to induce the Wnt/β-Catenin pathways, but the molecular mechanisms involved in CRC progression are still undefined. To evaluate the molecular relationship among oxidative stress and canonical/non-canonical Wnt pathways, we analyzed the response to ROS exposure in CRC cell lines with different Wnt signaling behaviour. METHODS. HCT116 (MSI) and SW480 (MSS) cells were treated with H2O2 [2 mM and 10 mM] for 15’and 30’. We assayed cell viability by MTS and cell cycle by FACS. Gene expression was evaluated by SYBR Green qRT-PCR, and protein expression was analyzed by IHC. Statistical analysis was performed by T-test (p value<0.05). RESULTS. MTS revealed different inhibition rates of cell growth at H2O2 concentrations. Acute stress induced by H2O2 [2mM] up-regulated gene expression of canonical LRP6 and LEF1, and non canonical ROR2 and JUN/AP1 molecules in SW480, while reduced ROR2 and LRP6 expression in HCT116. Both pathways showed a dose dependent increase in SW480, at H2O2 [10mM]. In HCT116 down-regulated gene expression of APC, LRP6, LEF1, and p65-NFkB was dependent on treatment time, in opposition to non-canonical ROR2. MUTYH, OGG1, NRF2, COX2 and JUN/AP1 expression significantly increased. H2O2 treatment induced FZD6 protein expression in HCT116 cytoplasm and E-cadherin protein expression in SW480 cytoplasm, while beta-catenin increased in both cell lines. Intriguingly we relieved a de novo APC expression in both cell lines cytoplasm. FACS analysis of cell cycle showed time dependent changes: upon H2O2 [2mM] treatment at 15’, SW480 increased in G1 and G2 and decreased in S, whereas HCT116 increased in G1 and slightly reduced in G2; after 30’, SW480 enhanced in G1 and S, and reduced in G2 while HCT116 diminished in G1 and increased in S/G2. CONCLUSIONS. In MSI and MSS CRC cells, oxidative stress differently affects the WNT pathways at gene and protein expression levels. Our results could unravel a new scenario for innovative CRC therapeutic approaches

    Photodynamic Therapy with Aminolevulinic Acid Enhances the Cellular Activity of Cells Cultured on Porcine Acellular Dermal Matrix Membranes Used in Periodontology

    Get PDF
    : This study aims to test a photodynamic protocol based on a gel containing aminolevulinic acid followed by red-LED (ALAD-PDT) irradiation on human gingival fibroblasts (hGFs) and osteoblasts (hOBs) cultured on a porcine acellular dermal matrix membrane (PADMM). In the previous literature, ALAD-PDT showed solid antibacterial activity and proliferative induction on HGFs cultured on plates and HOBs cultured on a cortical lamina. PADMMs are used in dentistry and periodontology to treat gingival recessions and to increase the tissue thickness in the case of a thin biotype without the risks or postoperative discomfort associated with connective tissue grafts. However, one of the possible complications in this type of surgery is represented by bacterial invasion and membrane exposition during the healing period. We hypothesized that the addition of ALAD-PDT to PADMMs could enhance more rapid healing and decrease the risks connected with bacterial invasion. In periodontal surgery, PADMMs are inserted after a full-thickness flap elevation between the bone and the flap. Consequently, all procedures were performed in parallel on hOBs and hGFs obtained by dental patients. The group control (CTRL) was represented by the unexposed cells cultured on the membranes, group LED (PDT) were the cells subjected to 7 min of red LED irradiation, and ALAD-PDT were the cells subjected to 45 min of ALAD incubation and then to 7 min of red LED irradiation. After treatments, all groups were analyzed for MTT assay and subjected to histological examination at 3 and 7 days and to the SEM observations at 3, 7, and 14 days. Different bone mineralization assays were performed to quantify the effects of ALAD-PDT on hOBs: ALP activity, ALP gene expression, osteocalcin, and alizarin red. The effects of ALAD-PDT on hGFs were evaluated by quantifying collagen 1, fibronectin, and MMP-8. Results showed that ALAD-PDT promoted cellular induction, forming a dense cellular network on hOBs and hGFs, and the assays performed showed statistically significantly higher values for ALAD-PDT with respect to LED alone and CTRLs. In conclusion, ALAD-PDT could represent a promising aid for enhancing the healing of gingival tissues after PADMM applications
    corecore