92 research outputs found

    Clinical significance of genetic aberrations in secondary acute myeloid leukemia

    Get PDF
    The study aimed to identify genetic lesions associated with secondary acute myeloid leukemia (sAML) in comparison with AML arising de novo (dnAML) and assess their impact on patients' overall survival (OS). High-resolution genotyping and loss of heterozygosity mapping was performed on DNA samples from 86 sAML and 117 dnAML patients, using Affymetrix Genome-Wide Human SNP 6.0 arrays. Genes TP53, RUNX1, CBL, IDH1/2, NRAS, NPM1, and FLT3 were analyzed for mutations in all patients. We identified 36 recurrent cytogenetic aberrations (more than five events). Mutations in TP53, 9pUPD, and del7q (targeting CUX1 locus) were significantly associated with sAML, while NPM1 and FLT3 mutations associated with dnAML. Patients with sAML carrying TP53 mutations demonstrated lower 1-year OS rate than those with wild-type TP53 (14.3% +/- 9.4% vs. 35.4% +/- 7.2%; P = 0.002), while complex karyotype, del7q (CUX1) and del7p (IKZF1) showed no significant effect on OS. Multivariate analysis confirmed that mutant TP53 was the only independent adverse prognostic factor for OS in sAML (hazard ratio 2.67; 95% CI: 1.335.37; P = 0.006). Patients with dnAML and complex karyotype carried sAML-associated defects (TP53 defects in 54.5%, deletions targeting FOXP1 and ETV6 loci in 45.4% of the cases). We identified several co-occurring lesions associated with either sAML or dnAML diagnosis. Our data suggest that distinct genetic lesions drive leukemogenesis in sAML. High karyotype complexity of sAML patients does not influence OS. Somatic mutations in TP53 are the only independent adverse prognostic factor in sAML. Patients with dnAML and complex karyotype show genetic features associated with sAML and myeloproliferative neoplasms. Am. J. Hematol., 2012

    EXPAND, a dose-finding study of ruxolitinib in patients with myelofibrosis and low platelet counts: 48-week follow-up analysis

    Get PDF
    EEXPAND (phase Ib, dose-finding study) evaluated the starting dose of ruxolitinib in patients with myelofibrosis with baseline platelet counts of 50-99×109 /L. The study consisted of dose-escalation and safety-expansion phases. Based on the baseline platelet counts, patients were assigned to stratum 1 (75-99x109 /L) or stratum 2 (50-74x109 /L), with the primary objective of determining the maximum safe starting dose (MSSD); key secondary objectives included safety and efficacy. At week 48 data cutoff (stratum 1, n=44; stratum 2, n=25), 24.6% (17 out of 69) of patients were still receiving treatment. The MSSD was established as ruxolitinib 10 mg twice daily in both strata. Thrombocytopenia [grade 4 (stratum 1, n=1; stratum 2, n=2)] was the only reported dose-limiting toxicity (study drug related) at 10 mg twice daily. In the MSSD cohort (stratum 1, n=20; stratum 2, n=18), adverse events (regardless of study drug relationship) led to treatment discontinuation in 15.0% and 33.3% of patients in stratum 1 and stratum 2, respectively, and dose adjustment/interruption in 45.0% and 66.7% of patients in stratum 1 and stratum 2, respectively. Three cases of on-treatment deaths were reported at the MSSD. Spleen response was achieved at week 48 in 33.3% and 30.0% of patients in stratum 1 and stratum 2, respectively. Improvements in the Total Symptom Score were also observed. In this study, ruxolitinib demonstrated acceptable tolerability in both the strata at the MSSD of 10 mg twice daily. (Registered at: clinicaltrials.gov identifier: 01317875)

    Allelic imbalance in CALR somatic mutagenesis

    No full text
    Interestingly, after JAK2, our observation on allelic imbalance of CALR mutations describes the second such case involved in MPN pathogenesis. It remains to be seen whether other cancer-associated loci exhibit biases in the acquisition of somatic mutations similar to JAK2 and CALR in MPN

    Deletions of the transcription factor Ikaros in myeloproliferative neoplasms

    No full text
    Transformation to acute leukemia is a major complication of myeloproliferative neoplasms (MPNs), however, the genetic changes leading to transformation remain largely unknown. We screened nine patients with post-MPN leukemia for chromosomal aberrations using microarray karyotyping. Deletions on the short arm of chromosome 7 (del7p) emerged as a recurrent defect. We mapped the common deleted region to the IKZF1 gene, which encodes the transcription factor Ikaros. We further examined the frequency of IKZF1 deletions in a total of 29 post-MPN leukemia and 526 MPN patients without transformation and observed a strong association of IKZF1 deletions with post-MPN leukemia in two independent cohorts. Patients with IKZF1 loss showed complex karyotypes, and del7p was a late event in the genetic evolution of the MPN clone. IKZF1 deletions were observed in both undifferentiated and differentiated myeloid cell types, indicating that IKZF1 loss does not cause differentiation arrest but rather renders progenitors susceptible to transformation, most likely through chromosomal instability. Induced Ikzf1 haploinsufficiency in primary murine progenitors resulted in elevated Stat5 phosphorylation and increased cytokine-dependent growth, suggesting that reduced expression of IKZF1 is sufficient to perturb growth regulation. Thus, IKZF1 loss is an important step in the leukemic transformation of a subpopulation of MPN patients
    • …
    corecore