4 research outputs found

    A numerical model of the VKS experiment

    Full text link
    We present numerical simulations of the magnetic field generated by the flow of liquid sodium driven by two counter-rotating impellers (VKS experiment). Using a dynamo kinematic code in cylindrical geometry, it is shown that different magnetic modes can be generated depending on the flow configuration. While the time averaged axisymmetric mean flow generates an equatorial dipole, our simulations show that an axial field of either dipolar or quadrupolar symmetry can be generated by taking into account non-axisymmetric components of the flow. Moreover, we show that by breaking a symmetry of the flow, the magnetic field becomes oscillatory. This leads to reversals of the axial dipole polarity, involving a competition with the quadrupolar component.Comment: 6 pages, 5 figure

    Chaotic magnetic field reversals in turbulent dynamos

    Full text link
    We present direct numerical simulations of reversals of the magnetic field generated by swirling flows in a spherical domain. In agreement with a recent model, we observe that coupling dipolar and quadrupolar magnetic modes by an asymmetric forcing of the flow generates field reversals. In addition, we show that this mechanism strongly depends on the value of the magnetic Prandtl number.Comment: 4 pages, 5 figure

    Effect of magnetic boundary conditions on the dynamo threshold of von Kármán swirling flows

    No full text
    We study the effect of different boundary conditions on the kinematic dynamo threshold of von Kármán type swirling flows in a cylindrical geometry. Using an analytical test flow, we model different boundary conditions: insulating walls all over the flow, effect of sodium at rest on the cylinder side boundary, effect of sodium behind the impellers, effect of impellers or side wall made of a high-magnetic-permeability material. We find that using high-magnetic-permeability boundary conditions decreases the dynamo threshold, the minimum being achieved when they are implemented all over the flow
    corecore