43 research outputs found

    Cu-catalyzed Si-NWS grown on “carbon paper” as anodes for Li-ion cells

    Get PDF
    The very high theoretical capacity of the silicon (4200mAh/g more than 10 times larger than graphite), environmental-friendly, abundant and low-cost, makes it a potential candidate to replace graphite in high energy density Li-ion batteries. As a drawback, silicon suffers from huge volume changes (300%) on alloying and dealloying with Li, leading a structural deformation that induces disruption. The use of nanostructured silicon materials has been shown to be an effective way to avoid this mechanical degradation of the active material. In this paper the synthesis of silicon nanowires, grown on a highly porous 3D-like carbon paper substrate by CVD using Cu as the catalyst, is presented. The use of carbon paper allows to achieve remarkable loadings of active material (2-5 mg/cm2) and, consequently, high capacity densities. The silicon electrode was investigated both morphologically and electrochemically. To improve the electrochemical performance various strategies have been carried out. It was observed that a very slow first cycle (C/40), which helps the formation of a stable solid electrolyte interphase on the silicon surface, improves the performance of the cells; nevertheless, their cycle life has been found not fully satisfactory. Morphological analysis of the Si-NWs electrodes before and after cycling showed the presence of a dense silicon layer below the nanowires which could reduce the electrical contact between the active material and the substrate

    DC and transient current distribution analysis from self-field measurements on ITER PFIS conductor

    Get PDF
    Current reconstruction in cable-in-conduit conductors (CICC) cables is a crucial issue to determine cables performance in working conditions, and must be performed using inverse problem approaches as direct measurement is not feasible. The current distribution has been studied for the ITER Poloidal Field Insert Sample (PFIS) conductor using annular arrays of Hall probes placed in three different locations along the sample during the test campaign at the SULTAN facility. The measurement apparatus is also described in the paper, together with the approach to current reconstruction

    Stability in a long length NbTi CICC

    Get PDF
    A crucial issue for a superconducting coil in order to be safely used in the magnetic system of a fusion reactor is stability against all foreseen disturbances. To simulate the fusion machine conditions, including off-normal events, e.g. plasma disruptions, the energy deposition has to be spread over a "long length" cable in conduit conductor (CICC) and a background magnetic field is needed. We have therefore designed and built an experiment consisting of an instrumented NbTi test module inserted in a pair of co-axial pulsed copper coils. A 0.6 m diameter superconducting coil provides a background magnetic field up to 3 T. Calibration of the energy inductively coupled between the pulsed coils and the module has been obtained measuring the system temperature increase just after the pulse by means of thermometers positioned along the conductor. Stability vs. operating current I/sub op/ has been examined for different helium temperatures and different background magnetic fields. The finite element code Gandalf for the stability and quenching transients analysis in forced flow cooled superconducting coils has been run to check the matching with the experimental results. (3 refs)

    Analyses and implications of V-I characteristic of PF insert conductor sample

    No full text
    Two short lengths of the full-size NbTi cable-in-conduit (CIC) conductor used to fabricate the ITER poloidal field coil insert were tested in the SULTAN facility. The two investigated conductors, otherwise identical, are distinguished only by the presence and absence of the last stage subcable wraps. The voltage-current (V-I) characteristics and the quench behaviour of the conductors with and without subcable wraps are compared. The dc performance of the conductors is limited by the occurrence of sudden take-offs above approximate to 35 kA in the leg with wraps and above approximate to 45 kA in the leg without wraps. Hall probes used to study the current distribution indicate that the better performance of the conductor without subcable wraps is closely related to the lower transverse resistance providing a more efficient current redistribution. (c) 2005 Elsevier B.V. All rights reserved

    Effect of current distribution on the voltage-temperature characteristics: study of the NbTiPF-FSJS sample for ITER

    No full text
    Various tests, either on full-size joint samples or on model coils confirmed that current distribution may play a crucial role in the electrical behaviour of CICC in operating conditions. In order to evaluate its influence, CEA developed a code (ENSIC) the main feature of which is a CICC electrical model including a discrete resistive network associated with superconducting lengths. Longitudinal and transverse resistances are also modeled, representing either joint or conductor. In our paper we will present the comparison of experimental results with ENSIC calculations for one International Thermonuclear Experimental Reactor (ITER) sample prototype relevant to poloidal field (PF) coils: the PF-full-size joint sample (PF-FSJS). In this purpose, the current distribution has been measured thanks to a segmented Rogowski coils system. Current distribution effects on the basic characteristics (T-CS, n-value...) of the cable compared to single strand will be discussed. This study aims at putting light on the global strand state in a conductor and is also useful to evaluate some intrinsic parameters hardly measurable (effective interpetal transverse contact resistance for example) allowing further application in coils. (C) 2003 Elsevier B.V. All rights reserved
    corecore