1,490 research outputs found

    Equivalence between two-qubit entanglement and secure key distribution

    Full text link
    We study the problem of secret key distillation from bipartite states in the scenario where Alice and Bob can only perform measurements at the single-copy level and classically process the obtained outcomes. Even with these limitations, secret bits can be asymptotically distilled by the honest parties from any two-qubit entangled state, under any individual attack. Our results point out a complete equivalence between two-qubit entanglement and secure key distribution: a key can be established through a one-qubit channel if and only if it allows to distribute entanglement. These results can be generalized to higher dimension for all those states that are one-copy distillable.Comment: 5 pages, REVTEX. Accepted version + added appendix. Proof of the main result and discussion improved, conclusions unchange

    Quantum correlations and secret bits

    Full text link
    It is shown that (i) all entangled states can be mapped by single-copy measurements into probability distributions containing secret correlations, and (ii) if a probability distribution obtained from a quantum state contains secret correlations, then this state has to be entangled. These results prove the existence of a two-way connection between secret and quantum correlations in the process of preparation. They also imply that either it is possible to map any bound entangled state into a distillable probability distribution or bipartite bound information exists.Comment: 4 pages, published versio

    Continuous stochastic Schrodinger equations and localization

    Get PDF
    The set of continuous norm-preserving stochastic Schrodinger equations associated with the Lindblad master equation is introduced. This set is used to describe the localization properties of the state vector toward eigenstates of the environment operator. Particular focus is placed on determining the stochastic equation which exhibits the highest rate of localization for wide open systems. An equation having such a property is proposed in the case of a single non-hermitian environment operator. This result is relevant to numerical simulations of quantum trajectories where localization properties are used to reduce the number of basis states needed to represent the system state, and thereby increase the speed of calculation.Comment: 18 pages in LaTeX + 6 figures (postscript), uses ioplppt.sty. To appear in J. Phys.

    From quantum trajectories to classical orbits

    Get PDF
    Recently it has been shown that the evolution of open quantum systems may be ``unraveled'' into individual ``trajectories,'' providing powerful numerical and conceptual tools. In this letter we use quantum trajectories to study mesoscopic systems and their classical limit. We show that in this limit, Quantum Jump (QJ) trajectories approach a diffusive limit very similar to the Quantum State Diffusion (QSD) unraveling. The latter follows classical trajectories in the classical limit. Hence, both unravelings show the rise of classical orbits. This is true for both regular and chaotic systems (which exhibit strange attractors).Comment: 7 pages RevTeX 3.0 + 2 figures (postscript). Submitted to Physical Review Letter

    Experimental investigation of a coherent quantum measurement of the degree of polarization of a single mode light beam

    Full text link
    A novel method for the direct measurement of the degree of polarization is described. It is one of the first practical implementations of a coherent quantum measurement, the projection on the singlet state. Our first results demonstrate the successful operation of the method. However, due to the nonlinear crystals used presently, its application is limited to spectral widths larger than ~8nm.Comment: 23 pages, 9 figures, submitted to Journal of Modern Optic

    The no-signaling condition and quantum dynamics

    Get PDF
    We show that the basic dynamical rules of quantum physics can be derived from its static properties and the condition that superluminal communication is forbidden. More precisely, the fact that the dynamics has to be described by linear completely positive maps on density matrices is derived from the following assumptions: (1) physical states are described by rays in a Hilbert space, (2) probabilities for measurement outcomes at any given time are calculated according to the usual trace rule, (3) superluminal communication is excluded. This result also constrains possible non-linear modifications of quantum physics.Comment: 4 page

    Atomic frequency comb memory with spin wave storage in 153Eu3+:Y2SiO5

    Full text link
    153Eu3+:Y2SiO5 is a very attractive candidate for a long lived, multimode quantum memory due to the long spin coherence time (~15 ms), the relatively large hyperfine splitting (100 MHz) and the narrow optical homogeneous linewidth (~100 Hz). Here we show an atomic frequency comb memory with spin wave storage in a promising material 153Eu3+:Y2SiO5, reaching storage times slightly beyond 10 {\mu}s. We analyze the efficiency of the storage process and discuss ways of improving it. We also measure the inhomogeneous spin linewidth of 153Eu3+:Y2SiO5, which we find to be 69 \pm 3 kHz. These results represent a further step towards realising a long lived multi mode solid state quantum memory.Comment: 7 pages and 7 figure

    Single-photon-level optical storage in a solid-state spin-wave memory

    Full text link
    A long-lived quantum memory is a firm requirement for implementing a quantum repeater scheme. Recent progress in solid-state rare-earth-ion-doped systems justifies their status as very strong candidates for such systems. Nonetheless an optical memory based on spin-wave storage at the single-photon-level has not been shown in such a system to date, which is crucial for achieving the long storage times required for quantum repeaters. In this letter we show that it is possible to execute a complete atomic frequency comb (AFC) scheme, including spin-wave storage, with weak coherent pulses of nˉ=2.5±0.6\bar{n} = 2.5 \pm 0.6 photons per pulse. We discuss in detail the experimental steps required to obtain this result and demonstrate the coherence of a stored time-bin pulse. We show a noise level of (7.1±2.3)10−3(7.1 \pm 2.3)10^{-3} photons per mode during storage, this relatively low-noise level paves the way for future quantum optics experiments using spin-waves in rare-earth-doped crystals

    Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening

    Get PDF
    We present a detailed analysis of a quantum memory for photons based on controlled and reversible inhomogeneous broadening (CRIB). The explicit solution of the equations of motion is obtained in the weak excitation regime, making it possible to gain insight into the dependence of the memory efficiency on the optical depth, and on the width and shape of the atomic spectral distributions. We also study a simplified memory protocol which does not require any optical control fields.Comment: 9 pages, 4 figures (Accepted for publication in Phys. Rev. A
    • …
    corecore