743 research outputs found

    Structure and Properties of Hughston's Stochastic Extension of the Schr\"odinger Equation

    Get PDF
    Hughston has recently proposed a stochastic extension of the Schr\"odinger equation, expressed as a stochastic differential equation on projective Hilbert space. We derive new projective Hilbert space identities, which we use to give a general proof that Hughston's equation leads to state vector collapse to energy eigenstates, with collapse probabilities given by the quantum mechanical probabilities computed from the initial state. We discuss the relation of Hughston's equation to earlier work on norm-preserving stochastic equations, and show that Hughston's equation can be written as a manifestly unitary stochastic evolution equation for the pure state density matrix. We discuss the behavior of systems constructed as direct products of independent subsystems, and briefly address the question of whether an energy-based approach, such as Hughston's, suffices to give an objective interpretation of the measurement process in quantum mechanics.Comment: Plain Tex, no figure

    The no-signaling condition and quantum dynamics

    Get PDF
    We show that the basic dynamical rules of quantum physics can be derived from its static properties and the condition that superluminal communication is forbidden. More precisely, the fact that the dynamics has to be described by linear completely positive maps on density matrices is derived from the following assumptions: (1) physical states are described by rays in a Hilbert space, (2) probabilities for measurement outcomes at any given time are calculated according to the usual trace rule, (3) superluminal communication is excluded. This result also constrains possible non-linear modifications of quantum physics.Comment: 4 page

    Complete parameterization, and invariance, of diffusive quantum trajectories for Markovian open systems

    Get PDF
    The state matrix ρ\rho for an open quantum system with Markovian evolution obeys a master equation. The master equation evolution can be unraveled into stochastic nonlinear trajectories for a pure state PP, such that on average PP reproduces ρ\rho. Here we give for the first time a complete parameterization of all diffusive unravelings (in which PP evolves continuously but non-differentiably in time). We give an explicit measurement theory interpretation for these quantum trajectories, in terms of monitoring the system's environment. We also introduce new classes of diffusive unravelings that are invariant under the linear operator transformations under which the master equation is invariant. We illustrate these invariant unravelings by numerical simulations. Finally, we discuss generalized gauge transformations as a method of connecting apparently disparate descriptions of the same trajectories by stochastic Schr\"odinger equations, and their invariance properties.Comment: 10 pages, including 5 figures, submitted to J. Chem Phys special issue on open quantum system

    Robustness and diffusion of pointer states

    Full text link
    Classical properties of an open quantum system emerge through its interaction with other degrees of freedom (decoherence). We treat the case where this interaction produces a Markovian master equation for the system. We derive the corresponding distinguished local basis (pointer basis) by three methods. The first demands that the pointer states mimic as close as possible the local non-unitary evolution. The second demands that the local entropy production be minimal. The third imposes robustness on the inherent quantum and emerging classical uncertainties. All three methods lead to localized Gaussian pointer states, their formation and diffusion being governed by well-defined quantum Langevin equations.Comment: 5 pages, final versio

    Classical Teleportation of a Quantum Bit

    Get PDF
    Classical teleportation is defined as a scenario where the sender is given the classical description of an arbitrary quantum state while the receiver simulates any measurement on it. This scenario is shown to be achievable by transmitting only a few classical bits if the sender and receiver initially share local hidden variables. Specifically, a communication of 2.19 bits is sufficient on average for the classical teleportation of a qubit, when restricted to von Neumann measurements. The generalization to positive-operator-valued measurements is also discussed.Comment: 4 pages, RevTe

    Non-realism : deep thought or a soft option ?

    Full text link
    The claim that the observation of a violation of a Bell inequality leads to an alleged alternative between nonlocality and non-realism is annoying because of the vagueness of the second term.Comment: 5 page

    Physical interpretation of stochastic Schroedinger equations in cavity QED

    Full text link
    We propose physical interpretations for stochastic methods which have been developed recently to describe the evolution of a quantum system interacting with a reservoir. As opposed to the usual reduced density operator approach, which refers to ensemble averages, these methods deal with the dynamics of single realizations, and involve the solution of stochastic Schr\"odinger equations. These procedures have been shown to be completely equivalent to the master equation approach when ensemble averages are taken over many realizations. We show that these techniques are not only convenient mathematical tools for dissipative systems, but may actually correspond to concrete physical processes, for any temperature of the reservoir. We consider a mode of the electromagnetic field in a cavity interacting with a beam of two- or three-level atoms, the field mode playing the role of a small system and the atomic beam standing for a reservoir at finite temperature, the interaction between them being given by the Jaynes-Cummings model. We show that the evolution of the field states, under continuous monitoring of the state of the atoms which leave the cavity, can be described in terms of either the Monte Carlo Wave-Function (quantum jump) method or a stochastic Schr\"odinger equation, depending on the system configuration. We also show that the Monte Carlo Wave-Function approach leads, for finite temperatures, to localization into jumping Fock states, while the diffusion equation method leads to localization into states with a diffusing average photon number, which for sufficiently small temperatures are close approximations to mildly squeezed states.Comment: 12 pages RevTeX 3.0 + 6 figures (GIF format; for higher-resolution postscript images or hardcopies contact the authors.) Submitted to Phys. Rev.

    Quantum trajectories for Brownian motion

    Get PDF
    We present the stochastic Schroedinger equation for the dynamics of a quantum particle coupled to a high temperature environment and apply it the dynamics of a driven, damped, nonlinear quantum oscillator. Apart from an initial slip on the environmental memory time scale, in the mean, our result recovers the solution of the known non-Lindblad quantum Brownian motion master equation. A remarkable feature of our approach is its localization property: individual quantum trajectories remain localized wave packets for all times, even for the classically chaotic system considered here, the localization being stronger the smaller \hbar.Comment: 4 pages, 3 eps figure
    corecore