402 research outputs found

    Quantum correlations in Newtonian space and time: arbitrarily fast communication or nonlocality

    Full text link
    We investigate possible explanations of quantum correlations that satisfy the principle of continuity, which states that everything propagates gradually and continuously through space and time. In particular, following [J.D. Bancal et al, Nature Physics 2012], we show that any combination of local common causes and direct causes satisfying this principle, i.e. propagating at any finite speed, leads to signalling. This is true even if the common and direct causes are allowed to propagate at a supraluminal-but-finite speed defined in a Newtonian-like privileged universal reference frame. Consequently, either there is supraluminal communication or the conclusion that Nature is nonlocal (i.e. discontinuous) is unavoidable.Comment: It is an honor to dedicate this article to Yakir Aharonov, the master of quantum paradoxes. Version 2 contains some more references and a clarified conclusio

    Multipartite Classical and Quantum Secrecy Monotones

    Get PDF
    In order to study multipartite quantum cryptography, we introduce quantities which vanish on product probability distributions, and which can only decrease if the parties carry out local operations or carry out public classical communication. These ``secrecy monotones'' therefore measure how much secret correlations are shared by the parties. In the bipartite case we show that the mutual information is a secrecy monotone. In the multipartite case we describe two different generalisations of the mutual information, both of which are secrecy monotones. The existence of two distinct secrecy monotones allows us to show that in multipartite quantum cryptography the parties must make irreversible choices about which multipartite correlations they want to obtain. Secrecy monotones can be extended to the quantum domain and are then defined on density matrices. We illustrate this generalisation by considering tri-partite quantum cryptography based on the Greenberger-Horne-Zeilinger (GHZ) state. We show that before carrying out measurements on the state, the parties must make an irreversible decision about what probability distribution they want to obtain

    Quadratic Bell inequalities as tests for multipartite entanglement

    Full text link
    This letter presents quantum mechanical inequalities which distinguish, for systems of NN spin-\half particles (N>2N>2), between fully entangled states and states in which at most N−1N-1 particles are entangled. These inequalities are stronger than those obtained by Gisin and Bechmann-Pasquinucci [Phys.\ Lett. A {\bf 246}, 1 (1998)] and by Seevinck and Svetlichny [quant-ph/0201046].Comment: 4 pages, including 1 figure. Typo's removed and one proof simplified in revised versio

    Quantum Communication between N partners and Bell's inequalities

    Full text link
    We consider a family of quantum communication protocols involving NN partners. We demonstrate the existence of a link between the security of these protocols against individual attacks by the eavesdropper, and the violation of some Bell's inequalities, generalizing the link that was noticed some years ago for two-partners quantum cryptography. The arguments are independent of the local hidden variable debate.Comment: 4 pages, 2 figure
    • …
    corecore