1 research outputs found
Dual Allosteric Inhibition of SHP2 Phosphatase
SHP2 is a cytoplasmic protein tyrosine
phosphatase encoded by the <i>PTPN11</i> gene and is involved
in cell proliferation, differentiation, and survival. Recently, we
reported an allosteric mechanism of inhibition that stabilizes the
auto-inhibited conformation of SHP2. SHP099 (<b>1</b>) was identified
and characterized as a moderately potent, orally bioavailable, allosteric
small molecule inhibitor, which binds to a tunnel-like pocket formed
by the confluence of three domains of SHP2. In this report, we describe
further screening strategies that enabled the identification of a
second, distinct small molecule allosteric site. SHP244 (<b>2</b>) was identified as a weak inhibitor of SHP2 with modest thermal
stabilization of the enzyme. X-ray crystallography revealed that <b>2</b> binds and stabilizes the inactive, closed conformation of
SHP2, at a distinct, previously unexplored binding siteî—¸a cleft
formed at the interface of the <i>N</i>-terminal SH2 and
PTP domains. Derivatization of <b>2</b> using structure-based
design resulted in an increase in SHP2 thermal stabilization, biochemical
inhibition, and subsequent MAPK pathway modulation. Downregulation
of DUSP6 mRNA, a downstream MAPK pathway marker, was observed in KYSE-520
cancer cells. Remarkably, simultaneous occupation of both allosteric
sites by <b>1</b> and <b>2</b> was possible, as characterized
by cooperative biochemical inhibition experiments and X-ray crystallography.
Combining an allosteric site 1 inhibitor with an allosteric site 2
inhibitor led to enhanced pharmacological pathway inhibition in cells.
This work illustrates a rare example of dual allosteric targeted protein
inhibition, demonstrates screening methodology and tactics to identify
allosteric inhibitors, and enables further interrogation of SHP2 in
cancer and related pathologies