81 research outputs found
A stochastic model for induced seismicity based on non-linear pressure diffusion and irreversible permeability enhancement
During deep reservoir engineering projects, in which permeability is enhanced by high-pressure fluid injection, seismicity is invariably induced, posing nuisance to the local population and a potential hazard for structures. Hazard and risk assessment tools that can operate in real-time during reservoir stimulation depend on the ability to efficiently model induced seismicity. We here propose a novel modelling approach based on a combination of physical considerations and stochastic elements. It can model a large number of synthetic event catalogues, and at the same time is constrained by observations of hydraulic behaviour in the injection well. We model fluid flow using non-linear pressure diffusion equations, in which permeability increases irreversibly above a prescribed pressure threshold. The transient pressure field is used to trigger events at so-called ‘seed points' that are distributed randomly in space and represent potential earthquake hypocentres. We assign to each seed point a differential stress based on the mean estimates of the in situ stress field and add a normal distributed random value. Assuming a fault orientation with respect to the stress field and a Mohr-Coulomb failure criterion, we evaluate at each time step, if a seed point is triggered through a pressure increase. A negative proportional relationship between differential stress and b values is further assumed as observed from tectonic earthquakes and in laboratory experiments. As soon as an event is triggered, we draw a random magnitude from a power-law distribution with a b value corresponding to the differential stress at the triggered seed point. We thus obtain time-dependent catalogues of seismic events including magnitude. The strategy of modelling flow and seismicity in a decoupled manner ensures efficiency and flexibility of the model. The model parameters are calibrated using observations from the Basel deep geothermal experiment in 2006. We are able to reproduce the hydraulic behaviour, the space-time evolution of the seismicity and its frequency-magnitude distribution. A large number of simulations of the calibrated model are then used to capture the variability of the process, an important input to compute probabilistic seismic hazard. We also use the calibrated model to explore alternative injection scenarios by varying injection volume, pressure as well as depth, and show the possible effect of those parameters on seismic hazar
Experimental Study of the Brittle Behavior of Clay shale in Rapid Unconfined Compression
The mechanical behavior of clay shales is of great interest in many branches of geo-engineering, including nuclear waste disposal, underground excavations, and deep well drilling. Observations from test galleries (Mont Terri, Switzerland and Bure, France) in these materials have shown that the rock mass response near the excavation is associated with brittle failure processes combined with bedding parallel shearing. To investigate the brittle failure characteristics of the Opalinus Clay recovered from the Mont Terri Underground Research Laboratory, a series of 19 unconfined uniaxial compression tests were performed utilizing servo-controlled testing procedures. All specimens were tested at their natural water content with loading approximately normal to the bedding. Acoustic emission (AE) measurements were utilized to help quantify stress levels associated with crack initiation and propagation. The unconfined compression strength of the tested specimens averaged 6.9MPa. The crack initiation threshold occurred at approximately 30% of the rupture stress based on analyzing both the acoustic emission measurements and the stress-strain behavior. The crack damage threshold showed large variability and occurred at approximately 70% of the rupture stres
Multi-scale hydraulic characterization of stimulated fractured crystalline rock at Grimsel test site
In-situ Stimulation and Circulation (ISC), Swiss Alps, hydraulic fracturing, hermo-hydro-mechanical (THM) behavior
A stochastic model for induced seismicity based on non-linear pressure diffusion and irreversible permeability enhancement
ISSN:0956-540XISSN:1365-246
Coseismic Stability Assessment of a Damaged Underground Ammunition Storage Chamber Through Ambient Vibration Recordings and Numerical Modelling
In the past decade, ambient vibration measurements found numerous applications on unstable rock slopes and developed into a powerful tool for site characterization of slope instabilities. In this study, for the first time ambient vibration measurements were applied to a rock mass strongly disturbed and damaged by subsurface explosions. The site above the ammunition storage chamber at Mitholz (Switzerland) is especially interesting because the subsurface geology below the seismic array is well known, including the location of the caverns, and the degree of degradation caused by the subsurface explosions in 1947 of around 40Â t TNT of ammunition. Measurement data were analyzed using current state-of-the-art seismic single-station and array methods, focusing on surface-wave dispersion analysis, wave field polarization, wave amplification using site-to-reference spectral ratios and analysis of normal mode behavior. The results allow for calibrating the elastic properties of a 2D numerical rock mechanical model which was used to simulate the stability of the disturbed rock mass during seismic loading. Therefore, ambient vibration measurements can contribute not only to a better understanding of the subsurface, but also for the assessment of earthquake risk.ISSN:2296-646
Ambient vibration characterization and monitoring of a rock slope close to collapse
We analyse the ambient vibration response of Alpe di Roscioro (AdR), an incipient rock slope failure located above the village Preonzo in southern Switzerland. Following a major failure in May 2012 (volume ∼210 000 m3), the remaining unstable rock mass (∼140 000 m3) remains highly fractured and disrupted, and has been the subject of intensive monitoring. We deployed a small-aperture seismic array at the site shortly after the 2012 failure. The measured seismic response exhibited strong directional amplification (factors up to 35 at 3.5 Hz), higher than previously recorded on rock slopes. The dominant direction of ground motion was found to be parallel to the predominant direction of deformation and perpendicular to open fractures, reflecting subsurface structure of the slope. We then equipped the site with two semi-permanent seismic stations to monitor the seismic response with the goal of identifying changes caused by internal damage that may precede subsequent failure. Although failure has not yet occurred, our data reveal important variations in the seismic response. Amplification factors and resonant frequencies exhibit seasonal trends related (both directly and inversely) to temperature changes and are sensitive to freezing periods (resonant frequencies increase with temperature and during freezing). We attribute these effects to thermal expansion driving microcrack closure, in addition to ice formation, which increase fracture and bulk rock stiffness. We find the site response at AdR is linear over the measured range of weak input motions spanning two orders of magnitude. Our results further develop and refine ambient vibration methods used in rock slope hazard assessment.ISSN:0956-540XISSN:1365-246
The deformation field in a rock mass during an in-situ hydraulic stimulation experiment
ISSN:1029-7006ISSN:1607-796
- …