36 research outputs found

    Public health risks associated with hepatitis E virus (HEV) as a food-borne pathogen

    Get PDF
    Hepatitis E virus (HEV) is an important infection in humans in EU/EEA countries, and over the last 10 years more than 21,000 acute clinical cases with 28 fatalities have been notified with an overall 10- fold increase in reported HEV cases; the majority (80%) of cases were reported from France, Germany and the UK. However, as infection in humans is not notifiable in all Member States, and surveillance differs between countries, the number of reported cases is not comparable and the true number of cases would probably be higher. Food-borne transmission of HEV appears to be a major route in Europe; pigs and wild boars are the main source of HEV. Outbreaks and sporadic cases have been identified in immune-competent persons as well as in recognised risk groups such as those with preexisting liver damage, immunosuppressive illness or receiving immunosuppressive treatments. The opinion reviews current methods for the detection, identification, characterisation and tracing of HEV in food-producing animals and foods, reviews literature on HEV reservoirs and food-borne pathways, examines information on the epidemiology of HEV and its occurrence and persistence in foods, and investigates possible control measures along the food chain. Presently, the only efficient control option for HEV infection from consumption of meat, liver and products derived from animal reservoirs is sufficient heat treatment. The development of validated quantitative and qualitative detection methods, including infectivity assays and consensus molecular typing protocols, is required for the development of quantitative microbial risk assessments and efficient control measures. More research on the epidemiology and control of HEV in pig herds is required in order to minimise the proportion of pigs that remain viraemic or carry high levels of virus in intestinal contents at the time of slaughter. Consumption of raw pig, wild boar and deer meat products should be avoided

    Characterisation of the sewage virome: comparison of NGS tools and occurrence of significant pathogens

    Full text link
    NGS techniques are excellent tools to monitor and identify viral pathogens circulating among the population with some limitations that need to be overcome, especially in complex matrices. Sewage contains a high amount of other microorganisms that could interfere when trying to sequence viruses for which random PCR amplifications are needed before NGS. The selection of appropriate NGS tools is important for reliable identification of viral diversity among the population. We have compared different NGS methodologies (Untargeted Viral Metagenomics, Target Enrichment Sequencing and Amplicon Deep Sequencing) for the detection and characterisation of viruses in urban sewage, focusing on three important human pathogens: papillomaviruses, adenoviruses and enteroviruses. A full picture of excreted viruses was obtained by applying Untargeted Viral Metagenomics, which detected members of four different vertebrate viral families in addition to bacteriophages, plant viruses and viruses infecting other hosts. Target Enrichment Sequencing, using specific vertebrate viral probes, allowed the detection of up to eight families containing human viruses, with high variety of types within the families and with a high genome coverage. By applying Amplicon Deep Sequencing, the diversity of enteroviruses, adenoviruses and papillomaviruses observed was higher than when applying the other two strategies and this technique allowed the subtyping of an enterovirus A71 C1 strain related to a brainstem encephalitis outbreak occurring at the same time in the sampling area. From the data obtained, we concluded that the different strategies studied provided different levels of analysis: TES is the best strategy to obtain a broad picture of human viruses present in complex samples such as sewage. Other NGS strategies are useful for studying the virome of complex samples when also targeting viruses infecting plants, bacteria, invertebrates or fungi (Untargeted Viral Metagenomics) or when observing the variety within a sole viral family is the objective of the study (Amplicon Deep Sequencing)

    Quantitative risk assessment of norovirus and adenovirus for the use of reclaimed water to irrigate lettuce in Catalonia

    Get PDF
    Wastewater is an important resource in water-scarce regions of the world, and its use in agriculture requires the guarantee of acceptable public health risks. The use of fecal indicator bacteria to evaluate safety does not represent viruses, the main potential health hazards. Viral pathogens could complement the use of fecal indicator bacteria in the evaluation of water quality. In this study, we characterized the concentration and removal of human adenovirus (HAdV) and norovirus genogroup II (NoV GII), highly abundant and important viral pathogens found in wastewater, in two wastewater treatment plants (WWTPs) that use different tertiary treatments (constructed wetland vs conventional UV, chlorination and Actiflo® treatments) for a year in Catalonia. The main objective of this study was to develop a Quantitative Microbial Risk Assessment for viral gastroenteritis caused by norovirus GII and adenovirus, associated with the ingestion of lettuce irrigated with tertiary effluents from these WWTPs. The results show that the disease burden of NoV GII and HAdV for the consumption of lettuce irrigated with tertiary effluent from either WWTP was higher than the WHO recommendation of 10−6 DALYs for both viruses. The WWTP with constructed wetland showed a higher viral reduction on average (3.9 and 2.8 logs for NoV GII and HAdV, respectively) than conventional treatment (1.9 and 2.5 logs) but a higher variability than the conventional WWTP. Sensitivity analysis demonstrated that the input parameters used to estimate the viral reduction by treatment and viral concentrations accounted for much of the model output variability. The estimated reductions required to reach the WHO recommended levels in tertiary effluent are influenced by the characteristics of the treatments developed in the WWTPs, and additional average reductions are necessary (in WWTP with a constructed wetland: A total of 6.7 and 5.1 logs for NoV GII and HAdV, respectively; and in the more conventional treatment: 7 and 5.6 logs). This recommendation would be achieved with an average quantification of 0.5 genome copies per 100 mL in reclaimed water for both viruses. The results suggest that the analyzed reclaimed water would require additional treatments to achieve acceptable risk in the irrigation of vegetables with reclaimed water

    Virus entèrics a aigües urbano-industrials

    Get PDF
    Increasing amounts of wastewater are reeled for human use. Neither the natural mechanism of virus inactivation, which vary from water to water, nor the methods used by man for water purification can guarantee the complete elimination of infectious viruses. Although the importance of the presence of human viruses in waters has not been fully stablished as the cause of viral infectious diseases, it becomes evident that the evaluation of viruses in waters is of major relevance. Such evaluation presents a great deal of difficulties, the most important one being the lack of indicator cells for the majority of human enteric viruses. So far, only Enteroviruses are well evaluated. The usual need of virus concentration prior to the evaluation of the viral load is another difficulty. There are a good deal of concentration methods which represent the main difference among the procedures used to evaluate the amount of virus in waters. Using the technique of adsorption-elution on glass powder and BGM cells as indicator system we have been evaluating in the last years the presence of Enterovirus in superficial waters in Barcelona and Surroundings. Poliovirus, Coxsackievirus and Echovirus have been detected either in the rivers (Llobregat and Besos) and in seawater

    High prevalence of rotavirus a in raw sewage samples from Northeast Spain

    Get PDF
    Rotavirus A (RVA) is the most common virus associated with infantile gastroenteritis worldwide, being a public health threat, as it is excreted in large amounts in stool and can persist in the environment for extended periods. In this study, we performed the detection of RVA and human adenovirus (HAdV) by TaqMan qPCR and assessed the circulation of RVA genotypes in three wastewater treatment plants (WWTPs) between 2015 and 2016 in Catalonia, Spain. RVA was detected in 90% and HAdV in 100% of the WWTP samples, with viral loads ranging between 3.96 104 and 3.30 108 RT-PCR Units/L and 9.51 104 and 1.16 106 genomic copies/L, respectively. RVA VP7 and VP4 gene analysis revealed the circulation of G2, G3, G9, G12, P[4], P[8], P[9] and P[10]. Nucleotide sequencing (VP6 fragment) showed the circulation of I1 and I2 genotypes, commonly associated with human, bovine and porcine strains. It is important to mention that the RVA strains isolated from the WWTPs were different from those recovered from piglets and calves living in the same area of single sampling in 2016. These data highlight the importance of monitoring water matrices for RVA epidemiology and may be a useful tool to evaluate and predict possible emergence/reemergence of uncommon strains in a region

    Unveiling Viruses Associated with Gastroenteritis Using a Metagenomics Approach

    Get PDF
    Acute infectious gastroenteritis is an important illness worldwide, especially on children, with viruses accounting for approximately 70% of the acute cases. A high number of these cases have an unknown etiological agent and the rise of next generation sequencing technologies has opened new opportunities for viral pathogen detection and discovery. Viral metagenomics in routine clinical settings has the potential to identify unexpected or novel variants of viral pathogens that cause gastroenteritis. In this study, 124 samples from acute gastroenteritis patients from 2012-2014 previously tested negative for common gastroenteritis pathogens were pooled by age and analyzed by next generation sequencing (NGS) to elucidate unidentified viral infections. The most abundant sequences detected potentially associated to acute gastroenteritis were from Astroviridae and Caliciviridae families, with the detection of norovirus GIV and sapoviruses. Lower number of contigs associated to rotaviruses were detected. As expected, other viruses that may be associated to gastroenteritis but also produce persistent infections in the gut were identified including several Picornaviridae members (EV, parechoviruses, cardioviruses) and adenoviruses. According to the sequencing data, astroviruses, sapoviruses and NoV GIV should be added to the list of viral pathogens screened in routine clinical analysis

    NGS techniques reveal a high diversity of RNA viral pathogens and papillomaviruses in fresh produce and irrigation water

    Full text link
    Fresh fruits and vegetables are susceptible to microbial contamination at every stage of the food production chain, and as a potential source of pathogens, irrigation water quality is a critical factor. Next-generation sequencing (NGS) techniques have been flourishing and expanding to a wide variety of fields. However, their application in food safety remains insufficiently explored, and their sensitivity requires improvement. In this study, quantitative polymerase chain reaction (qPCR) assays showed low but frequent contamination of common circulating viral pathogens, which were found in 46.9% of samples of fresh produce: 6/12 lettuce samples, 4/12 strawberries samples, and 5/8 parsley samples. Furthermore, the application of two different NGS approaches, target enrichment sequencing (TES) for detecting viruses that infect vertebrates and amplicon deep sequencing (ADS), revealed a high diversity of viral pathogens, especially Norovirus (NoV) and Human Papillomavirus (HPV), in fresh produce and irrigation water. All NoV and HPV types found in fresh fruit and vegetable samples were also detected in irrigation water sources, indicating that these viruses are common circulating pathogens in the population and that irrigation water may be the most probable source of viral pathogens in food samples

    Development of improved low-cost ceramic water filters for viral removal in the Haitian context

    Get PDF
    Household-based water treatment (HWT) is increasingly being promoted to improve water quality and, therefore, health status in low-income countries. Ceramic water filters (CWFs) are used in many regions as sustainable HWT and have been proven to meet World Health Organization (WHO) microbiological performance targets for bacterial removal (24 log); however, the described viral removal efficiencies are insufficient to significantly reduce the associated risk of viral infection. With the objective of improving the viral removal efficiencies of ceramic water filters, new prototypes with different oxide compositions and firing atmospheres have been developed and evaluated. For removal efficiencies human adenoviruses, MS2 bacteriophage and Escherichia coli were quantified in all prototypes. A new model of CWF that was fired in a reductive atmosphere presented virus and bacteria removal efficiencies greater than 3.0 log and 2.5 log, respectively, which would fulfill the viral targets that are recommended by the WHO. Ceramic characterization of the selected filters, which were fired in a reductive atmosphere, showed that a larger specific surface area than those of control filters and higher fraction of a positive Z-potential fraction are the most likely explanations for this increase in virus removal

    Metagenomics for the study of viruses in urban sewage as a tool for public health surveillance

    Full text link
    The application of next-generation sequencing (NGS) techniques for the identification of viruses present in urban sewage has not been fully explored. This is partially due to a lack of reliable and sensitive protocols for studying viral diversity and to the highly complex analysis required for NGS data processing. One important step towards this goal is finding methods that can efficiently concentrate viruses from sewage samples. Here the application of a virus concentration method based on skimmed milk organic flocculation (SMF) using 10 L of sewage collected in different seasons enabled the detection of many viruses. However, some viruses, such as human adenoviruses, could not always be detected using metagenomics, even when quantitative PCR (qPCR) assessments were positive. A targeted metagenomic assay for adenoviruses was conducted and 59.41% of the obtained reads were assigned to murine adenoviruses. However, up to 20 different human adenoviruses (HAdV) were detected by this targeted assay being the most abundant HAdV-41 (29.24%) and HAdV-51 (1.63%). To improve metagenomics' sensitivity, two different protocols for virus concentration were comparatively analysed: an ultracentrifugation protocol and a lower-volume SMF protocol. The sewage virome contained 41 viral families, including pathogenic viral species from families Caliciviridae, Adenoviridae, Astroviridae, Picornaviridae, Polyomaviridae, Papillomaviridae and Hepeviridae. The contribution of urine to sewage metavirome seems to be restricted to a few specific DNA viral families, including the polyomavirus and papillomavirus species. In experimental infections with sewage in a rhesus macaque model, infective human hepatitis E and JC polyomavirus were identified. Urban raw sewage consists of the excreta of thousands of inhabitants; therefore, it is a representative sample for epidemiological surveillance purposes. The knowledge of the metavirome is of significance to public health, highlighting the presence of viral strains that are circulating within a population while acting as a complex matrix for viral discovery. (c) 2017 Elsevier B.V. All rights reserved

    Characterisation of the sewage virome: comparison of NGS tools and occurrence of significant pathogens

    Full text link
    NGS techniques are excellent tools to monitor and identify viral pathogens circulating among the population with some limitations that need to be overcome, especially in complex matrices. Sewage contains a high amount of other microorganisms that could interfere when trying to sequence viruses for which random PCR amplifications are needed before NGS. The selection of appropriate NGS tools is important for reliable identification of viral diversity among the population. We have compared different NGS methodologies (Untargeted Viral Metagenomics, Target Enrichment Sequencing and Amplicon Deep Sequencing) for the detection and characterisation of viruses in urban sewage, focusing on three important human pathogens: papillomaviruses, adenoviruses and enteroviruses. A full picture of excreted viruses was obtained by applying Untargeted Viral Metagenomics, which detected members of four different vertebrate viral families in addition to bacteriophages, plant viruses and viruses infecting other hosts. Target Enrichment Sequencing, using specific vertebrate viral probes, allowed the detection of up to eight families containing human viruses, with high variety of types within the families and with a high genome coverage. By applying Amplicon Deep Sequencing, the diversity of enteroviruses, adenoviruses and papillomaviruses observed was higher than when applying the other two strategies and this technique allowed the subtyping of an enterovirus A71 C1 strain related to a brainstem encephalitis outbreak occurring at the same time in the sampling area. From the data obtained, we concluded that the different strategies studied provided different levels of analysis: TES is the best strategy to obtain a broad picture of human viruses present in complex samples such as sewage. Other NGS strategies are useful for studying the virome of complex samples when also targeting viruses infecting plants, bacteria, invertebrates or fungi (Untargeted Viral Metagenomics) or when observing the variety within a sole viral family is the objective of the study (Amplicon Deep Sequencing)
    corecore