28 research outputs found

    Plasma-activated Ringer's Lactate Solution Displays a Selective Cytotoxic Effect on Ovarian Cancer Cells

    Get PDF
    Epithelial Ovarian Cancer (EOC) is one of the leading causes of cancer-related deaths among women and is characterized by the diffusion of nodules or plaques from the ovary to the peritoneal surfaces. Conventional therapeutic options cannot eradicate the disease and show low efficacy against resistant tumor subclones. The treatment of liquids via cold atmospheric pressure plasma enables the production of plasma-activated liquids (PALs) containing reactive oxygen and nitrogen species (RONS) with selective anticancer activity. Thus, the delivery of RONS to cancer tissues by intraperitoneal washing with PALs might be an innovative strategy for the treatment of EOC. In this work, plasma-activated Ringer's Lactate solution (PA-RL) was produced by exposing a liquid substrate to a multiwire plasma source. Subsequently, PA-RL dilutions are used for the treatment of EOC, non-cancer and fibroblast cell lines, revealing a selectivity of PA-RL, which induces a significantly higher cytotoxic effect in EOC with respect to non-cancer cells

    BRCA-Associated Ovarian Cancer: From Molecular Genetics to Risk Management

    Get PDF
    Ovarian cancer (OC) mostly arises sporadically, but a fraction of cases are associated with mutations in BRCA1 and BRCA2 genes. The presence of a BRCA mutation in OC patients has been suggested as a prognostic and predictive factor. In addition, the identification of asymptomatic carriers of such mutations offers an unprecedented opportunity for OC prevention. This review is aimed at exploring the current knowledge on epidemiological and molecular aspects of BRCA-associated OC predisposition, on pathology and clinical behavior of OC occurring in BRCA mutation carriers, and on the available options for managing asymptomatic carriers

    Electrochemotherapy in Vulvar Cancer and Cisplatin Combined with Electroporation. Systematic Review and In Vitro Studies

    Get PDF
    Electrochemotherapy (ECT) is an emerging treatment for solid tumors and an attractive research field due to its clinical results. This therapy represents an alternative local treatment to the standard ones and is based on the tumor-directed delivery of non-ablative electrical pulses to maximize the action of specific cytotoxic drugs such as cisplatin (CSP) and bleomycin (BLM) and to promote cancer cell death. Nowadays, ECT is mainly recommended as palliative treatment. However, it can be applied to a wide range of superficial cancers, having an impact in preventing or delaying tumor progression and therefore in improving quality of life. In addition, during the natural history of the tumor, early ECT may improve patient outcomes. Our group has extensive clinical and research experience on ECT in vulvar tumors in the palliative setting, with 70% overall response rate. So far, in most studies, ECT was based on BLM. However, the potential of CSP in this setting seems interesting due to some theoretical advantages. The purpose of this report is to: (i) compare the efficacy of CSP and BLM-based ECT through a systematic literature review; (ii) report the results of our studies on CSP-resistant squamous cell tumors cell lines and the possibility to overcome chemoresistance using ECT; (iii) discuss the future ECT role in gynecological tumors and in particular in vulvar carcinoma

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    PGC1\u3b1: Friend or Foe in Cancer?

    No full text
    The PGC1 family (Peroxisome proliferator-activated receptor \uce\ub3 (PPAR \uce\ub3) coactivators) of transcriptional coactivators are considered master regulators of mitochondrial biogenesis and function. The PGC1\uce\ub1 isoform is expressed especially in metabolically active tissues, such as the liver, kidneys and brain, and responds to energy-demanding situations. Given the altered and highly adaptable metabolism of tumor cells, it is of interest to investigate PGC1\uce\ub1 in cancer. Both high and low levels of PGC1\uce\ub1 expression have been reported to be associated with cancer and worse prognosis, and PGC1\uce\ub1 has been attributed with oncogenic as well as tumor suppressive features. Early in carcinogenesis PGC1\uce\ub1 may be downregulated due to a protective anticancer role, and low levels likely reflect a glycolytic phenotype. We suggest mechanisms of PGC1\uce\ub1 downregulation and how these might be connected to the increased cancer risk that obesity is now known to entail. Later in tumor progression PGC1\uce\ub1 is often upregulated and is reported to contribute to increased lipid and fatty acid metabolism and/or a tumor cell phenotype with an overall metabolic plasticity that likely supports drug resistance as well as metastasis. We conclude that in cancer PGC1\uce\ub1 is neither friend nor foe, but rather the obedient servant reacting to metabolic and environmental cues to benefit the tumor cell

    The \u3b1-ketoglutarate dehydrogenase complex in cancer metabolic plasticity

    No full text
    Deregulated metabolism is a well-established hallmark of cancer. At the hub of various metabolic pathways deeply integrated within mitochondrial functions, the \u3b1-ketoglutarate dehydrogenase complex represents a major modulator of electron transport chain activity and tricarboxylic acid cycle (TCA) flux, and is a pivotal enzyme in the metabolic reprogramming following a cancer cell\u2019s change in bioenergetic requirements. By contributing to the control of \u3b1-ketoglutarate levels, dynamics, and oxidation state, the \u3b1-ketoglutarate dehydrogenase is also essential in modulating the epigenetic landscape of cancer cells. In this review, we will discuss the manifold roles that this TCA enzyme and its substrate play in cancer

    A multi-parametric workflow for the prioritization of mitochondrial DNA variants of clinical interest

    No full text
    Assigning a pathogenic role to mitochondrial DNA (mtDNA) variants and unveiling the potential involvement of the mitochondrial genome in diseases are challenging tasks in human medicine. Assuming that rare variants are more likely to be damaging, we designed a phylogeny-based prioritization workflow to obtain a reliable pool of candidate variants for further investigations. The prioritization workflow relies on an exhaustive functional annotation through the mtDNA extraction pipeline MToolBox and includes Macro Haplogroup Consensus Sequences to filter out fixed evolutionary variants and report rare or private variants, the nucleotide variability as reported in HmtDB and the disease score based on several predictors of pathogenicity for non-synonymous variants. Cutoffs for both the disease score as well as for the nucleotide variability index were established with the aim to discriminate sequence variants contributing to defective phenotypes. The workflow was validated on mitochondrial sequences from Leber's Hereditary Optic Neuropathy affected individuals, successfully identifying 23 variants including the majority of the known causative ones. The application of the prioritization workflow to cancer datasets allowed to trim down the number of candidate for subsequent functional analyses, unveiling among these a high percentage of somatic variants. Prioritization criteria were implemented in both standalone ( http://sourceforge.net/projects/mtoolbox/ ) and web version ( https://mseqdr.org/mtoolbox.php ) of MToolBox

    Molecular and metabolic features of oncocytomas: seeking the blueprints of indolent cancers

    No full text
    Oncocytic tumors are a peculiar subset of human neoplasms in which mitochondria have been proven to have a prominent role. A number of paradoxes renders these clinical entities interesting from the translational research point of view. Most oncocytic tumors are generally metabolically constrained due to the impaired respiratory capacity and lack of the ability to respond to hypoxia, yet they maintain features that allow them to strive and persist in an indolent form. Their unique molecular and metabolic characteristics are an object of investigation that may reveal novel ways for therapeutic strategies based on metabolic targeting. With this aim in mind, we here examine the current knowledge on oncocytomas and delve into the molecular causes and consequences that revolve around the oncocytic phenotype, to understand whether we can learn to design therapies from the dissection of benign neoplasms
    corecore