3 research outputs found

    Tracking Spectral Changes in Blazars with the Energetic Gamma Ray Experiment Telescope (EGRET)

    Get PDF
    I analyze the entire blazar data from the Energetic Gamma Ray Experiment Telescope (EGRET) on board the Compton Gamma Ray Observatory (CGRO), using the skymaps that were regenerated to include the changes in performance during the mission. The sample of 98 sources consists of 66 flat spectrum radio quasars (FSRQs), 17 low-frequency peaked BL Lac objects (LBLs), 4 high-frequency peaked BL Lac objects (HBLs), 10 flat spectrum radio sources and 1 radio galaxy. I do not detect any clear pattern in the variation of spectral index with flux. Some of the blazars do not show any statistical evidence for spectral variability. The spectrum hardens with increasing flux in a few cases. There is also evidence for a flux-hardness anticorrelation at low fluxes in five blazars. I examine the EGRET spectral energy distribution (SED) for all the sources to identify these trends. I also observe a previously unreported spectral hysteresis in the spectral index Vs. flux space at weekly timescales, in all the three FSRQs for which data from flares lasting 3-4 weeks were available. All three sources show a counterclockwise rotation despite the widely different flux profiles. The time-averaged spectra of the HBLs are inconsistent with the predictions of the current theoretical models that have had success in describing simultaneous X-ray/TeV observations, and suggest additional components in the GeV band, as well as complex time variability. Current theoretical pictures explain the GeV emission as comptonization of the synchrotron photons in the jet, and predict hard spectra that should join smoothly with the TeV emission. The current analysis shows that the situation is more complex. The spectrum ranges from hard to soft during individual epochs, and the Mrk 421 SED shows a convex break in the aggregated data. The mission averaged EGRET spectrum for PKS~2155-304 also shows a similar (but not as pronounced) convex curvature. Simultaneous GLAST and X-ray observations of high X-ray states will address the issue of the convex curvature in the future. Such data will also explore the possibility of the steep EGRET emission originating from photons produced by electrons accelerated close to the limit of diffusive shock acceleration

    An Intriguing Convex Break in the EGRET SED of Mrk 421

    Get PDF
    Based upon analysis of the entire EGRET data from Mrk 421, it is found that the time-averaged spectra are inconsistent with the predictions of current theoretical models that have had success in describing simultaneous X-ray/TeV observations, and suggest additional components in the GeV band, as well as complex time variability. Current theoretical pictures explain the GeV emission as comptonization of the synchrotron photons in the jet, and predict hard spectra that should join smoothly with the TeV emission. Our analysis shows that the situation is more complex. The spectrum ranges from hard to soft during individual epochs, and shows a convext break in the aggregated data. We also present the mission-averaged EGRET spectrum for PKS 2155-304, which shows a similar (but not as pronounced) convex curvature. We discuss a series of possible explanations for the 10(exp 22) - 10(exp 23) HZ declining part of the EGRET nu F(sub nu), spectrum for Mrk 421, and suggest that it is synchrotron emission from the high energy tail of the electron population that produces the X-rays during the highest X-ray states. Such multi-MeV photons are produced by electrons accelerated close to the limit of diffusive shock acceleration. Simultaneous GLAST and X-ray observations of high X-ray states will address the issue of the convex curvature in the future

    Does the Blazar Gamma-Ray Spectrum Harden with Increasing Flux? Analysis of 9 Years of EGRET Data

    Full text link
    The Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory (CGRO) discovered gamma-ray emission from more than 67 blazars during its 9 yr lifetime. We conducted an exhaustive search of the EGRET archives and selected all the blazars that were observed multiple times and were bright enough to enable a spectral analysis using standard power-law models. The sample consists of 18 flat-spectrum radio quasars(FSRQs), 6 low-frequency peaked BL Lac objects (LBLs) and 2 high-frequency peaked BL Lac objects (HBLs). We do not detect any clear pattern in the variation of spectral index with flux. Some of the blazars do not show any statistical evidence for spectral variability. The spectrum hardens with increasing flux in a few cases. There is also evidence for a flux-hardness anticorrelation at low fluxes in five blazars. The well-observed blazars (3C 279, 3C 273, PKS 0528+134, PKS 1622-297 PKS 0208-512) do not show any overall trend in the long-term spectral dependence on flux, but the sample shows a mixture of hard and soft states. We observed a previously unreported spectral hysteresis at weekly timescales in all three FSRQs for which data from flares lasting for ~(3-4) weeks were available. All three sources show a counterclockwise rotation, despite the widely different flux profiles. We analyze the observed spectral behavior in the context of various inverse Compton mechanisms believed to be responsible for emission in the EGRET energy range. Our analysis uses the EGRET skymaps that were regenerated to include the changes in performance during the mission
    corecore