2 research outputs found

    Statistical investigation of climate change effects on the utilization of the sediment heat energy

    Get PDF
    Suvilahti, a suburb of the city of Vaasa in western Finland, was the first area to use seabed sediment heat as the main source of heating for a high number of houses. Moreover, in the same area, a unique land uplift effect is ongoing. The aim of this paper is to solve the challenges and find opportunities caused by global warming by utilizing seabed sediment energy as a renewable heat source. Measurement data of water and air temperature were analyzed, and correlations were established for the sediment temperature data using Statistical Analysis System (SAS) Enterprise Guide 7.1. software. The analysis and provisional forecast based on the autoregression integrated moving average (ARIMA) model revealed that air and water temperatures show incremental increases through time, and that sediment temperature has positive correlations with water temperature with a 2-month lag. Therefore, sediment heat energy is also expected to increase in the future. Factor analysis validations show that the data have a normal cluster and no particular outliers. This study concludes that sediment heat energy can be considered in prominent renewable production, transforming climate change into a useful solution, at least in summertime

    A conceptual framework for the future of sea-level rise and land uplift changes in the Vaasa region of Finland

    Get PDF
    This paper uses the Vaasa region of Finland as an illustrative case study to explore how the relationships between climate change, sea-level rise and land uplift may offer applications in forecasting future land uplift changes. Using a comparative literature review and analysis of open source data, a conceptual framework is developed to ex-amine causes-effect relationships between them. The sea-level rise around the world by the end of the 21st century shows dramatic effects all over the world. However, the rate of land uplift in the Vaasa region is higher than the rate of sea-level rise. This localised finding is different from global average rates for land uplift and sea-level rise. This indicates that although climate change is global, it can lead to very different regional expressions. This paper presents a first attempt to combine sea-level rise and land uplift into a single cohesive framework to sup-port future land uplift management. The results of this paper establish a conceptual framework for studies of vulnerability and adaptation to climate change that can ben-efit local, regional and global communities
    corecore