94 research outputs found

    Keratin 8 expression in head and neck epithelia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The intermediate filament forming protein keratin 8 (K8) is a tumour-associated antigen, which was shown to be over-expressed in a variety of malignancies. Here, we present a study of K8 expression in squamous epithelia of the head and neck area, including normal mucosa, hyperplastic and dysplastic leukoplakia, carcinomas of different sub-localisations, and lymph node metastases.</p> <p>Methods</p> <p>K8 expression was assessed upon immunohistochemistry with specific antibodies in cryosections of primary tumours of the head and neck area.</p> <p>Results</p> <p>K8 expression was characteristic of transformed tissue and marked early stages of disease, <it>i.e. </it>dysplastic oral leukoplakia, but not normal or hyperplastic epithelium. With the exception of carcinomas of the larynx and the tongue, K8 expression also strictly differentiated carcinomas from normal epithelium of the same origin. Furthermore, K8<sup>high </sup>was characteristic of cells, which had detached from the sites of primary tumours and had been invading the surrounding tissue at the time point of surgery.</p> <p>Conclusion</p> <p>K8 is an excellent marker for head and neck malignancies, which allows for early detection as well as for visualisation of potentially disseminating tumour cells <it>in vivo</it>.</p

    Quantitative Proteomics Reveals Cellular Targets of Celastrol

    Get PDF
    Celastrol, a natural substance isolated from plant extracts used in traditional Chinese medicine, has been extensively investigated as a possible drug for treatment of cancer, autoimmune diseases, and protein misfolding disorders. Although studies focusing on celastrol's effects in specific cellular pathways have revealed a considerable number of targets in a diverse array of in vitro models there is an essential need for investigations that can provide a global view of its effects. To assess cellular effects of celastrol and to identify target proteins as biomarkers for monitoring treatment regimes, we performed large-scale quantitative proteomics in cultured human lymphoblastoid cells, a cell type that can be readily prepared from human blood samples. Celastrol substantially modified the proteome composition and 158 of the close to 1800 proteins with robust quantitation showed at least a 1.5 fold change in protein levels. Up-regulated proteins play key roles in cytoprotection with a prominent group involved in quality control and processing of proteins traversing the endoplasmic reticulum. Increased levels of proteins essential for the cellular protection against oxidative stress including heme oxygenase 1, several peroxiredoxins and thioredoxins as well as proteins involved in the control of iron homeostasis were also observed. Specific analysis of the mitochondrial proteome strongly indicated that the mitochondrial association of certain antioxidant defense and apoptosis-regulating proteins increased in cells exposed to celastrol. Analysis of selected mRNA transcripts showed that celastrol activated several different stress response pathways and dose response studies furthermore showed that continuous exposure to sub-micromolar concentrations of celastrol is associated with reduced cellular viability and proliferation. The extensive catalog of regulated proteins presented here identifies numerous cellular effects of celastrol and constitutes a valuable biomarker tool for the development and monitoration of disease treatment strategies

    Isolation and characterization of head and neck cancer-derived peritumoral and cancer-associated fibroblasts

    Get PDF
    IntroductionHead and neck squamous cell carcinomas (HNSCC) are characterized by strong cellular and molecular heterogeneity and treatment resistance entailing poor survival. Besides cell-intrinsic properties, carcinoma cells receive important cues from non-malignant cells within the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are a major component of the TME that impact on the molecular make-up of malignant cells and have a decisive function in tumor progression. However, the potential functionality of fibroblasts within tumor-adjacent, macroscopically normal tissue remains poorly explored.MethodsHere, we isolated primary peritumoral fibroblasts (PtFs) from macroscopically normal tissue in vicinity of primary human papillomavirus-negative and -positive oropharyngeal HNSCC and compared their phenotype and functionality with matched CAFs (n = 5 pairs) and with human oral fibroblasts (hOFs).ResultsExpression patterns of CD90, CD73, CD105, smooth muscle actin, Vimentin, and S100A4 were comparable in PtFs, CAFs, and hOFs. Cell proliferation and doubling times of CAFs and PtFs were heterogeneous across patients (n =2 PtF&gt;CAF; n = 1 CAF&gt;PtF; n = 2 CAF=PtF) and reflected inferior growth than hOFs. Furthermore, PtFs displayed an reduced heterogeneity in cell size compared to matched CAFs, which were characterized by the presence of single large cells. Overall, conditioned supernatants from CAFs had more frequently growth-promoting effects on a panel of carcinoma cell lines of the upper aerodigestive tract carcinoma cell lines (Cal27, Cal33, FaDu, and Kyse30), whereas significant differences in migration-inducing effects demonstrated a higher potential of PtFs. Except for Kyse30, CAFs were significantly superior to hOFs in promoting proliferation, while PtFs induced stronger migration than hOFs in all carcinoma lines tested. Analysis of soluble factors demonstrated significantly increased VEGF-A production in CAFs (except in pat.8), and significantly increased PDGF-BB production in PtFs of two patients. Tube formation assays confirmed a significantly enhanced angiogenic potential of conditioned supernatants from CAFs compared to hOFs on human umbilical vascular endothelial cells (HUVECs) in vitro.DiscussionHence, matched CAFs and PtFs present in HNSCC patients are heterogeneous in their proliferation-, migration-, and angiogenesis-promoting capacity. Despite this heterogeneity, CAFs induced stronger carcinoma cell proliferation and HUVEC tube formation overall, whereas PtFs promoted migration of tumor cells more strongly

    TSPAN8 promotes cancer cell stemness via activation of sonic Hedgehog signaling

    Get PDF
    Cancer stem cells (CSCs) represent a major source of treatment resistance and tumor progression. However, regulation of CSCs stemness is not entirely understood. Here, we report that TSPAN8 expression is upregulated in breast CSCs, promotes the expression of the stemness gene NANOG, OCT4, and ALDHA1, and correlates with therapeutic resistance. Mechanistically, TSPAN8 interacts with PTCH1 and inhibits the degradation of the SHH/PTCH1 complex through recruitment of deubiquitinating enzyme ATXN3. This results in the translocation of SMO to cilia, downstream gene expression, resistance of CSCs to chemotherapeutic agents, and enhances tumor formation in mice. Accordingly, expression levels of TSPAN8, PTCH1, SHH, and ATXN3 are positively correlated in human breast cancer specimens, and high TSPAN8 and ATXN3 expression levels correlate with poor prognosis. These findings reveal a molecular basis of TSPAN8-enhanced Sonic Hedgehog signaling and highlight a role for TSPAN8 in promoting cancer stemness

    Avian SERPINB12 Expression in the Avian Oviduct Is Regulated by Estrogen and Up-Regulated in Epithelial Cell-Derived Ovarian Carcinomas of Laying Hens

    Get PDF
    Serine protease inhibitors (SERPINs) are involved in a variety of biological processes such as blood clotting, angiogenesis, immune system, and embryogenesis. Although, of these, SERPINB12 is identified as the latest member of clade B in humans, little is known of it in chickens. Thus, in this study, we investigated SERPINB12 expression profiles in various tissues of chickens and focused on effects of steroid hormone regulation of its expression. In the chicken oviduct, SERPINB12 mRNA and protein are abundant in the luminal (LE) and glandular (GE) epithelia of the magnum in response to endogenous or exogenous estrogen. Furthermore, SERPINB12 mRNA and protein increase significantly in GE of cancerous ovaries of laying hens with epithelia-derived ovarian cancer. Collectively, these results indicate that SERPINB12 is a novel estrogen-stimulated gene that is up-regulated by estrogen in epithelial cells of the chicken oviduct and that it is a potential biomarker for early detection of ovarian carcinomas in laying hens and women

    Reducing tumor growth and angiogenesis using a triple therapy measured with Contrast-enhanced ultrasound (CEUS)

    Get PDF
    Background To evaluate the in vivo response by detecting the anti-angiogenic and invasion-inhibiting effects of a triple-combination-therapy in an experimental-small-animal-squamous-cell-carcinoma-model using the “flash-replenishment” (FR) method to assess tissue hemodynamics via contrast-enhanced-ultrasound (CEUS). Methods Human hypopharynx-carcinoma-cells were subcutaneously injected into the left flank of 22-female-athymic-nude-rats. After seven days of subcutaneous tumor growth, FR-measurements were performed on each rat. Treatment-group and control-group were treated every day for a period of one week, with the treatment-group receiving solvents containing a triple therapy of Upamostat®, Celecoxib® and Ilomastat® and the control-group solvents only. On day seven, follow-up measurements were performed using the same measurement protocol to assess the effects of the triple therapy. VueBox® was used to quantify the kinetic parameters and additional immunohistochemistry analyses were performed for comparison with and validation of the CEUS results against established methods (Proliferation/Ki-67, vascularization/CD31, apoptosis/caspase3). Results Compared to the control-group, the treatment-group that received the triple-therapy resulted in a reduction of tumor growth by 48.6% in size. Likewise, the immunohistochemistry results showed significant decreases in tumor proliferation and vascularization in the treatment-group in comparison to the control-group of 26%(p≤0.05) and 32.2%(p≤0.05) respectively. Correspondingly, between the baseline and follow-up measurements, the therapy-group was associated with a significant(p ≤ 0.01) decrease in the relative-Blood-Volume(rBV) in both the whole tumor(wt) and hypervascular tumor(ht) areas (p≤0.01), while the control-group was associated with a significant (p≤0.01) increase of the rBV in the wt area and a non-significant increase (p≤0.16) in the ht area. The mean-transit-time (mTT) of the wt and the ht areas showed a significant increase (p≤0.01) in the follow-up measurements in the therapy group. Conclusion The triple-therapy is feasible and effective in reducing both tumor growth and vascularization. In particular, compared with the placebo-group, the triple-therapy-group resulted in a reduction in tumor growth of 48.6% in size when assessed by CEUS and a significant reduction in the number of vessels in the tumor of 32% as assessed by immunohistochemistry. As the immunohistochemistry supports the CEUS findings, CEUS using the “flash replenishment”(FR) method appears to provide a useful assessment of the anti-angiogenic and invasion-inhibiting effects of a triple combination therapy

    EpCAM and the biology of hepatic stem/progenitor cells

    Get PDF
    Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein, which is frequently and highly expressed on carcinomas, tumor-initiating cells, selected tissue progenitors, and embryonic and adult stem cells. During liver development, EpCAM demonstrates a dynamic expression, since it can be detected in fetal liver, including cells of the parenchyma, whereas mature hepatocytes are devoid of EpCAM. Liver regeneration is associated with a population of EpCAM-positive cells within ductular reactions, which gradually lose the expression of EpCAM along with maturation into hepatocytes. EpCAM can be switched on and off through a wide panel of strategies to fine-tune EpCAM-dependent functional and differentiative traits. EpCAM-associated functions relate to cell–cell adhesion, proliferation, maintenance of a pluripotent state, regulation of differentiation, migration, and invasion. These functions can be conferred by the full-length protein and/or EpCAM-derived fragments, which are generated upon regulated intramembrane proteolysis. Control by EpCAM therefore not only depends on the presence of full-length EpCAM at cellular membranes but also on varying rates of the formation of EpCAM-derived fragments that have their own regulatory properties and on changes in the association of EpCAM with interaction partners. Thus spatiotemporal localization of EpCAM in immature liver progenitors, transit-amplifying cells, and mature liver cells will decisively impact the regulation of EpCAM functions and might be one of the triggers that contributes to the adaptive processes in stem/progenitor cell lineages. This review will summarize EpCAM-related molecular events and how they relate to hepatobiliary differentiation and regeneration

    CD44s and CD44v6 Expression in Head and Neck Epithelia

    Get PDF
    Background: CD44 splice variants are long-known as being associated with cell transformation. Recently, the standard form of CD44 (CD44s) was shown to be part of the signature of cancer stem cells (CSCs) in colon, breast, and in head and neck squamous cell carcinomas (HNSCC). This is somewhat in contradiction to previous reports on the expression of CD44s in HNSCC. The aim of the present study was to clarify the actual pattern of CD44 expression in head and neck epithelia. Methods: Expression of CD44s and CD44v6 was analysed by immunohistochemistry with specific antibodies in primary head and neck tissues. Scoring of all specimens followed a two-parameters system, which implemented percentages of positive cells and staining intensities from − to +++ (score = %×intensity; resulting max. score 300). In addition, cell surface expression of CD44s and CD44v6 was assessed in lymphocytes and HNSCC. Results: In normal epithelia CD44s and CD44v6 were expressed in 60–95% and 50–80% of cells and yielded mean scores with a standard error of a mean (SEM) of 249.5±14.5 and 198±11.13, respectively. In oral leukoplakia and in moderately differentiated carcinomas CD44s and CD44v6 levels were slightly increased (278.9±7.16 and 242±11.7; 291.8±5.88 and 287.3±6.88). Carcinomas in situ displayed unchanged levels of both proteins whereas poorly differentiated carcinomas consistently expressed diminished CD44s and CD44v6 levels. Lymphocytes and HNSCC lines strongly expressed CD44s but not CD44v6. Conclusion: CD44s and CD44v6 expression does not distinguish normal from benign or malignant epithelia of the head and neck. CD44s and CD44v6 were abundantly present in the great majority of cells in head and neck tissues, including carcinomas. Hence, the value of CD44s as a marker for the definition of a small subset of cells (i.e. less than 10%) representing head and neck cancer stem cells may need revision

    Reducing tumor growth and angiogenesis using a triple therapy measured with Contrast-enhanced ultrasound (CEUS)

    Get PDF
    Background To evaluate the in vivo response by detecting the anti-angiogenic and invasion-inhibiting effects of a triple-combination-therapy in an experimental-small-animal-squamous-cell-carcinoma-model using the “flash-replenishment” (FR) method to assess tissue hemodynamics via contrast-enhanced-ultrasound (CEUS). Methods Human hypopharynx-carcinoma-cells were subcutaneously injected into the left flank of 22-female-athymic-nude-rats. After seven days of subcutaneous tumor growth, FR-measurements were performed on each rat. Treatment-group and control-group were treated every day for a period of one week, with the treatment-group receiving solvents containing a triple therapy of Upamostat®, Celecoxib® and Ilomastat® and the control-group solvents only. On day seven, follow-up measurements were performed using the same measurement protocol to assess the effects of the triple therapy. VueBox® was used to quantify the kinetic parameters and additional immunohistochemistry analyses were performed for comparison with and validation of the CEUS results against established methods (Proliferation/Ki-67, vascularization/CD31, apoptosis/caspase3). Results Compared to the control-group, the treatment-group that received the triple-therapy resulted in a reduction of tumor growth by 48.6% in size. Likewise, the immunohistochemistry results showed significant decreases in tumor proliferation and vascularization in the treatment-group in comparison to the control-group of 26%(p≤0.05) and 32.2%(p≤0.05) respectively. Correspondingly, between the baseline and follow-up measurements, the therapy-group was associated with a significant(p ≤ 0.01) decrease in the relative-Blood-Volume(rBV) in both the whole tumor(wt) and hypervascular tumor(ht) areas (p≤0.01), while the control-group was associated with a significant (p≤0.01) increase of the rBV in the wt area and a non-significant increase (p≤0.16) in the ht area. The mean-transit-time (mTT) of the wt and the ht areas showed a significant increase (p≤0.01) in the follow-up measurements in the therapy group. Conclusion The triple-therapy is feasible and effective in reducing both tumor growth and vascularization. In particular, compared with the placebo-group, the triple-therapy-group resulted in a reduction in tumor growth of 48.6% in size when assessed by CEUS and a significant reduction in the number of vessels in the tumor of 32% as assessed by immunohistochemistry. As the immunohistochemistry supports the CEUS findings, CEUS using the “flash replenishment”(FR) method appears to provide a useful assessment of the anti-angiogenic and invasion-inhibiting effects of a triple combination therapy

    A transcriptomic map of EGFR-induced epithelial-to-mesenchymal transition identifies prognostic and therapeutic targets for head and neck cancer

    Get PDF
    Background Epidermal growth factor receptor (EGFR) is both a driver oncogene and a therapeutic target in advanced head and neck squamous cell carcinoma (HNSCC). However, response to EGFR treatment is inconsistent and lacks markers for treatment prediction. This study investigated EGFR-induced epithelial-to-mesenchymal transition (EMT) as a central parameter in tumor progression and identified novel prognostic and therapeutic targets, and a candidate predictive marker for EGFR therapy response. Methods Transcriptomic profiles were analyzed by RNA sequencing (RNA-seq) following EGFR-mediated EMT in responsive human HNSCC cell lines. Exclusive genes were extracted via differentially expressed genes (DEGs) and a risk score was determined through forward feature selection and Cox regression models in HNSCC cohorts. Functional characterization of selected prognostic genes was conducted in 2D and 3D cellular models, and findings were validated by immunohistochemistry in primary HNSCC. Results An EGFR-mediated EMT gene signature composed of n = 171 genes was identified in responsive cell lines and transferred to the TCGA-HNSCC cohort. A 5-gene risk score comprising DDIT4, FADD, ITGB4, NCEH1, and TIMP1 prognosticated overall survival (OS) in TCGA and was confirmed in independent HNSCC cohorts. The EGFR-mediated EMT signature was distinct from EMT hallmark and partial EMT (pEMT) meta-programs with a differing enrichment pattern in single malignant cells. Molecular characterization showed that ITGB4 was upregulated in primary tumors and metastases compared to normal mucosa and correlated with EGFR/MAPK activity in tumor bulk and single malignant cells. Preferential localization of ITGB4 together with its ligand laminin 5 at tumor-stroma interfaces correlated with increased tumor budding in primary HNSCC tissue sections. In vitro, ITGB4 knock-down reduced EGFR-mediated migration and invasion and ITGB4-antagonizing antibody ASC8 impaired 2D and 3D invasion. Furthermore, a logistic regression model defined ITGB4 as a predictive marker of progression-free survival in response to Cetuximab in recurrent metastatic HNSCC patients. Conclusions EGFR-mediated EMT conveyed through MAPK activation contributes to HNSCC progression upon induction of migration and invasion. A 5-gene risk score based on a novel EGFR-mediated EMT signature prognosticated survival of HNSCC patients and determined ITGB4 as potential therapeutic and predictive target in patients with strong EGFR-mediated EMT
    corecore