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Dollé L, Theise ND, Schmelzer E, Boulter L, Gires O, van Grunsven LA.
EpCAM and the biology of hepatic stem/progenitor cells. Am J Physiol Gastroin-
test Liver Physiol 308: G233–G250, 2015. First published December 4, 2014;
doi:10.1152/ajpgi.00069.2014.—Epithelial cell adhesion molecule (EpCAM) is a
transmembrane glycoprotein, which is frequently and highly expressed on carci-
nomas, tumor-initiating cells, selected tissue progenitors, and embryonic and adult
stem cells. During liver development, EpCAM demonstrates a dynamic expression,
since it can be detected in fetal liver, including cells of the parenchyma, whereas
mature hepatocytes are devoid of EpCAM. Liver regeneration is associated with a
population of EpCAM-positive cells within ductular reactions, which gradually lose
the expression of EpCAM along with maturation into hepatocytes. EpCAM can be
switched on and off through a wide panel of strategies to fine-tune EpCAM-
dependent functional and differentiative traits. EpCAM-associated functions relate
to cell–cell adhesion, proliferation, maintenance of a pluripotent state, regulation of
differentiation, migration, and invasion. These functions can be conferred by the
full-length protein and/or EpCAM-derived fragments, which are generated upon
regulated intramembrane proteolysis. Control by EpCAM therefore not only de-
pends on the presence of full-length EpCAM at cellular membranes but also on
varying rates of the formation of EpCAM-derived fragments that have their own
regulatory properties and on changes in the association of EpCAM with interaction
partners. Thus spatiotemporal localization of EpCAM in immature liver progeni-
tors, transit-amplifying cells, and mature liver cells will decisively impact the
regulation of EpCAM functions and might be one of the triggers that contributes to
the adaptive processes in stem/progenitor cell lineages. This review will summarize
EpCAM-related molecular events and how they relate to hepatobiliary differenti-
ation and regeneration.

EpCAM; liver differentiation; liver regeneration; hepatic stem/progenitor cell;
signaling

THE LIVER IS ONE OF THE MOST complex and multifunctional
organs of the body of vertebrates. Its vital roles range from
activities, such as drug metabolism and detoxification of harm-
ful components, to the biosynthesis of hormones and proteins
essential for digestion via the decomposition of red blood cells
and the storage and metabolism of glycogen. Accordingly, the
liver is a central organ, and injury or malfunctions of it are
life-threatening situations. Owing to scarcity of liver donors,

which hampers both transplantation of whole organs and of cell
suspensions, transplantation of hepatic stem/progenitor cells
(HSPCs) has been explored as a valuable bridge and legitimate,
alternate strategy for whole-organ replacement. HSPCs have
the potential to provide patients with a comprehensive liver
regeneration, as these cells have the capacity to differentiate in
any epithelial cell type of the liver, i.e., hepatocytes and
cholangiocytes (91, 126). To this end, detailed knowledge of
the biology of HSPCs, including molecular switches involved
in processes of HSPC maintenance and differentiation into
mature liver cells, is mandatory and currently understudied.
One such potential molecular switch is the epithelial cell
adhesion molecule (EpCAM), which is highly expressed in
HSPCs but becomes lost during differentiation into hepato-
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cytes (37, 152). EpCAM is a transmembrane glycoprotein,
which is primarily expressed in simple epithelia, progenitor
cells, normal and malignant stem cells, as well as in numerous
carcinomas of different origin (5, 94, 146). The functions of
EpCAM are numerous and include cell–cell adhesion, prolif-
eration, maintenance of undifferentiated states, as well as
regulation of differentiation, migration, and invasion. Owing to
its strong expression in carcinoma cells, most of these func-
tions have been described primarily in malignant cells, and
formal proof of function and role in normal cells is often
lacking. More recently, the dynamic expression of EpCAM has
been discussed in the context of tumor progression and in the
process of embryonic stem-cell differentiation (30, 40, 41, 82).
Here, EpCAM appears to be expressed in primary tumors and
overt metastases, whereas intermediates of the metastatic cas-
cade, i.e., circulating and disseminating tumor cells (CTCs/
DTCs), might downregulate EpCAM to gain migratory and
invasive properties (40). Likewise, human and murine embry-
onic stem cells express EpCAM to high levels, which are
selectively downregulated during differentiation (41, 99).
Based on the strong expression in HSPCs and the dynamic
expression pattern of EpCAM during liver cell differentiation,
this molecule might represent a central target in the field of
hepatocellular differentiation and liver regeneration. The pres-
ent review will discuss recent advances on EpCAM and HSPC
biology, as well as the potential role that EpCAM could play in
the decision of HSPCs to commit to a particular cell type
during a regenerative response.

UPDATES ON EpCAM RESEARCH

The molecular structure of EpCAM. EpCAM was first de-
scribed as an antigen in colon carcinoma cells (52) and is
involved in the regulation of normal, malignant, and stem-cell
phenotypes (41, 54, 94). However, much of the research on the
role of EpCAM in the liver has focused on carcinomas (149,
150). Whereas EpCAM [also known as tumor-associated cal-
cium signal transducer 1, cluster of differentiation 326, or
trophoblast cell-surface antigen 1 (TROP1)] was identified as a
cell–cell adhesive molecule (75, 77), it does not structurally
resemble any of the four major families of cell adhesion
molecules (CAMs), namely cadherins (e.g., E-cadherin), integ-
rins (e.g., CD49f), selectins (e.g., E-selectin), and members of
the Ig superfamily (e.g., ICAM). Human EpCAM is composed
of 314 amino acids (aa) that are divided in three domains: an
N-terminal, 242-aa extracellular domain (EpEx); a 23-aa, sin-
gle-transmembrane domain; and a C-terminal, 26-aa intracel-
lular domain (EpICD; Fig. 1A) (115). The sequence of the
EpCAM molecule predicts the presence of three N-linked
glycosylation sites within the EpEx, which have been experi-
mentally confirmed (20). Glycosylation of EpCAM demon-
strates some degree of tissue specificity and was enhanced in
tumor vs. normal tissue (104). One possible reason for the
enhanced glycosylation of EpCAM in cancers might relate to
the positive impact of glycosylation on the molecule’s reten-
tion time at the membrane (95).
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Fig. 1. Epithelial cell adhesion molecule (EpCAM) and its significance in research. A: schematic representation of the EpCAM structure. B: number of papers
found nonconsecutively from 1989 to 2014 in PubMed by searching independently the key word “EpCAM.” C: repartition in percentage of published papers
on EpCAM in combination with 2 other important areas in regenerative medicine: “microfluidic” and “decellularized.” The search was done for 2006, 2009, 2011,
and 2013. D: percentage of papers describing EpCAM within a certain organ or (E) a specific function/role. BM, bone marrow.
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The EpEx further contains EGF and thyroglobulin repeat-
like domains, which are involved in both reciprocal interac-
tions between EpCAM molecules on adjacent cells and lateral
interactions between EpCAM molecules (4), and comprises 12
highly conserved cysteine residues forming disulfide bonds on
the EpEx. The epithelium-specific expression of EpCAM is
highly conserved among a variety of vertebrate species, i.e.,
zebrafish, rodent, dog, and human, suggestive of a central
function for EpCAM. For example, murine EpCAM has 81%
identity and 89% similarity to the human counterpart.

EpCAM research. The number of papers related to EpCAM
has increased markedly since 1997 (Fig. 1B). This concerns not
only the field of carcinogenesis but also extends to other
life-science areas, such as stem-cell biology of the germ-line
and somatic cells, morphogenesis, and organogenesis. To ac-
quire a clearer view on the flourishing niche of EpCAM
research, we compared the amount of published works on
EpCAM within two other well-known protagonists in regen-
erative medicine (Fig. 1C). We chose the “decellularization”
technique, a process of tissue treatment by which cells are
discharged, but ECM and scaffold remain intact and are now
being widely explored for use in the creation of bioartificial
organs and “microfluidics” technology, which is the science of
designing and manufacturing small devices that deal with tiny
volumes of fluid integrated in bioreactors. In 2006, microflu-
idics was, by far, the most prominent of these research areas,
but surprisingly, with time, the proportion of papers related to
EpCAM research has increased constantly compared with the
two previously described techniques, and from 2010, EpCAM
is the most prominent topic within this group (Fig. 1C). The
increase in publications related to EpCAM is due to two
important factors: its expression in epithelial cells in most
tissues of the body, which thereby promotes its wide use in
various independent areas of research and by many laboratories
(Fig. 1D), and the discovery that EpCAM is involved in many
processes, such as cell adhesion (75), proliferation (83, 96),
differentiation (41, 99), migration (30, 110), and cell-cycle
progression (18), facilitating its wide expansion and its impact
in multiple important research domains (Fig. 1E).

Furthermore, due to the prevalence of EpCAM on many
carcinomas, it has been (re)discovered many times and has
been ascribed �20 different names (115, 129). Alternative
nomenclatures are typically derived from the name of the tool
used to characterize/identify the antigen: either based on MAb
(such as 17/1A or HEA125) or based on the cDNA clones
(such as EAS or TROP1). Here, we will use the term EpCAM
throughout the text as proposed by Baeuerle and Gires (3) for
unified nomenclature.

Dynamic expression of EpCAM. Most of the CAMs are
present on virtually all normal cells, contrary to EpCAM,
which is in mature cells restricted to simple squamous epithelia
and some adenomatous epithelia. To maintain the proper or-
ganization of multicellular animals, cells need to be able to
adhere, to move relative to each other, and to repel and signal
to each other. Individual cells fulfill these tasks by communi-
cating across their plasma membranes. During morphogenesis,
CAM-mediated interactions provide adhesive forces required
for cells to aggregate and form tissues. CAM-mediated adhe-
sions in developing cells are highly dynamic, which provides
the fluidity required for cellular movements that drive morpho-
genesis. Some CAMs simultaneously act as adhesive mole-

cules and sensors, whereas others have evolutionarily co-opted
to function predominantly as adhesive factors or signal-trans-
ducing sensors. The exact function of EpCAM is currently
being elucidated, but EpCAM appears to play many different
roles, including cell–cell adhesion and signal transduction,
which appear to be influenced by the spatial and temporal
expression pattern of EpCAM.

In normal adult tissues, EpCAM is expressed on the baso-
lateral surface of simple, pseudostratified, and transitional
epithelial cells in various tissues of the gastrointestinal tract,
reproductive system, and respiratory tract (5, 92). The pattern
of EpCAM mRNA expression in tissues is similar to human
EpCAM protein, with the highest expression in the gut and
lower levels in the kidneys, pancreas, mammary glands, lungs,
and genitalia, consistent with its epithelial cell distribution
(98). Most normal, nonpathological, epithelial tissue is EpCAM
positive, with the exception of epidermal keratinocytes, gastric
parietal cells, myoepithelial cells, thymic cortical epithelial,
and hepatocytes (92, 111). Interestingly, EpCAM expression
has been correlated with many populations of progenitors in
the development of organs. This has been demonstrated in the
assembly of germ-line cells in development, where EpCAM is
expressed during formation and early gonad assembly (1).
Neonatal male and female germ cells remain EpCAM positive,
whereas EpCAM is absent in adult testis, with the exception of
spermatogonia. Similarly, research by Cirulli et al. (21) indi-
cated a regulatory role of EpCAM during morphogenesis of
pancreatic islets. Indeed, the authors investigated whether the
EpCAM expression pattern observed in the fetal pancreas is
retained in the adult pancreas. In contrast to fetal pancreas, the
highest levels of expression of EpCAM were not identified in
endocrine cells but rather, in small, intercalar; interlobular; and
main ducts (21). This developmentally regulated expression
and function of EpCAM has also been illustrated in other
organs, such as the kidney (130, 131), lung (59), skin (66), and
thymus (46).

In mammalian systems, embryonic expression of EpCAM is
observed in the initial phases of development, from the fertil-
ized oocyte to the morula. In human and mouse, EpCAM is
expressed in embryonic epithelia, but the levels usually drop as
cells reach terminal differentiation (129). In this early devel-
opmental window, EpCAM expression is not restricted to
epithelial precursor cells but is also present in undifferentiated
stem cells that are not yet assigned to a specific cell fate (1,
128, 129). Interestingly, in embryoid bodies in vitro, three
phenotypically distinct populations of cells could be distin-
guished with regard to expression pattern of EpCAM: intracel-
lularly or homogenously along the cell membrane or exclu-
sively at restrictive contact points with neighboring cells. Such
a distribution of EpCAM in these embryoid bodies may be
associated with the differentiation potential of these cells. In
later stages of mammalian and zebrafish development, EpCAM
expression becomes strictly epithelial specific, and terminally
differentiated cells stop expressing EpCAM (120).

In summary, EpCAM expression fades, and its regulatory
effects become muted as progenitor cells differentiate through
their respective maturational lineages to adult, differentiated
fates, accompanied with a drop in stem/progenitor activity,
which suggests that the level of cellular differentiation and
specialization, at least partly, depends on EpCAM expression
(41, 53, 82, 99, 129).
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EpCAM and cancer. The role of EpCAM in cancer research
has been covered in numerous articles (3, 38, 39, 54, 103, 115,
139) and is beyond the scope of this review; therefore, we will
only touch on the insights garnered from work of EpCAM in
cancer. Generally, EpCAM is not found on tumors of meso-
dermal and ectodermal origin but on most, if not all, carcino-
mas. High expression levels of EpCAM in primary tumors are
often associated with proliferation and a more aggressive
phenotype with respect to overall survival and appearance of
metastases. Actually, EpCAM is the prime epithelial antigen in
use to isolate CTCs and to characterize DTCs once they have
left the primary cancer. CTCs and DTCs are central interme-
diates during tumor progression and reflect the tumor’s ability
to remain in the body, circulate, and colonize new tissue to
form lethal metastases. In this respect, reduced expression of
EpCAM was also associated with epithelial-to-mesenchymal
transition, and recently, a lack of EpCAM on CTCs has
emerged and might offer a mechanism by which cells can
escape the strict architecture of their tumor (40). These oppos-
ing expression patterns in primary tumors vs. CTCs/DTCs
might reflect a context-dependent adaption of EpCAM expres-
sion or show a difference in EpCAM processing during met-
astatic progression (30). Thus knowledge on the function of
EpCAM in these cells is valuable and requires additional work.

EpCAM and its plethora of functions. The functions of
EpCAM are highly diverse and are summarized in Fig. 2, and
many of these functions have been discussed in other reviews
(115, 129). EpCAM is described as a homophilic cell–CAM,
which contributes to tissue integrity (Fig. 2A) (45, 72, 77, 93,
98). However, EpCAM is a relatively weak cell–CAM com-
pared with E-cadherin. Whereas able to mediate homophilic
adhesion in E-cadherin-negative cells, EpCAM can weaken
E-cadherin-mediated intercellular adhesion, suggesting a po-
tential role as modulator of the strength of cell–cell adhesion
(76). Furthermore, recent data demonstrated that EpCAM in-
teracts with proteins of the claudin family and fosters tight
junction formation and actomyosin-dependent contractility
(84, 85). Thus the role of EpCAM in cell adhesion remains
somewhat contradictory and would profit from further inves-
tigation.

EpCAM has also been found in the copresence of CD44 and
claudin-7 in complex molecular networks [called tetraspanin-
enriched microdomains (TEMs); Fig. 2B] (66, 71, 100). It is
believed that claudin-7 pulls EpCAM in TEMs (or differently
termed microdomains of the membrane) to foster its activity in
metastases and signaling. EpCAM has also been reported to be
involved in the regulation of the epithelial integrity by affect-
ing composition, localization, and function of tight junctions
via interaction with claudins (147).

Since EpCAM is described on microvesicles, a possible
autocrine or paracrine effect is conceivable. Due to its release
in its soluble form (soluble EpEx; see below) or presence in
microvesicles (e.g., exosomes), potential signals can migrate
from cell to cell inside of the same organ or travel around to
reach other organs (Fig. 2C). Notably, proteomic analysis of
exosomes released from colorectal cancer cells has identified
the presence of EpCAM on those microvesicles (56, 86), and in
bladder cancer, urinary soluble EpCAM levels were detected
and increased with stage and grade of the tumor (10). Addi-
tional functions have also been assigned to EpCAM, such as

regulation of contractility and morphogenic movements and
regulation of proliferation (83, 94).

One of the most recent discoveries is the proteolytic
cleavage of EpCAM at multiple sites (48, 83, 115). EpCAM
undergoes a regulated, intramembranous proteolysis, begin-
ning with cleavage of the EpEx by sheddases of the a
disintegrin and metalloproteinase (ADAM) family (14, 83)
and by protease �-secretase 1 (BACE-1) (48). Shedding-
dependent activation of signal transduction by EpCAM is
perpetuated further by cleavage via the �-secretase complex,
allowing the generation and nuclear translocation of the
EpICD (Fig. 2C). The short-lived EpICD uses components
of the wingless (Wnt) signaling pathway (83) and activates
promoters of stemness genes (82) and cell-cycle regulators
(18) (see Fig. 2C). Regulated intramembrane proteolysis
(RIP) of EpCAM is a prerequisite for EpCAM-dependent
proliferation (24, 83, 94) and regulation of tumorigenic and
pluripotency features (74, 82) and additionally, results in
degradation of the protein (48). Since Schnell and cowork-
ers (116) have highlighted that EpCAM is proteolytically
processed by an additional unknown pathway, the proteol-
ysis seems to be a crucial event in the regulation of EpCAM
signaling. Interestingly, a comparison of the use of two
antibodies (clones: MOC-31 and 9-2, recognizing the N- and
C-terminus domains of EpCAM, respectively) has been
carried out recently on human pancreatic cancer (34) and
on a comprehensive multitissue microarray (35) to allow
discrimination between two variants of the membranous
EpCAM form: EpEx�/EpICD� (EpCAMMF) and EpEx�/
EpICD� (EpCAMMT). The investigators found a high pres-
ence of EpCAMMF in noncancerous tissues, whereas in
pancreatic cancer, EpCAMMT was highly increased and
associated with a more aggressive phenotype (34, 35). These
results suggest the presence of two distinct EpCAM variants
that may occur during carcinogenesis and that loss of
membranous EpICD expression is a frequent event in human
cancer.

Besides “physical” contact with other partners at the plasma
membrane, EpCAM can interact with different signaling path-
ways. The Hippo-Yes-associated protein (YAP) pathway me-
diates the control of cell proliferation by contact inhibition, as
well as other attributes of the physical state of cells in tissues
(47). One of the upstream-interacting proteins proposed to
modulate the core Hippo signaling pathway is E-cadherin (see
Fig. 2E). Indeed, the group of Gumbiner (64) showed that
Hippo signaling pathway components are required for E-
cadherin-dependent contact inhibition of proliferation, suggest-
ing that in addition to its role in cell–cell adhesion, E-cadherin-
mediated cell–cell contact modulates the Hippo signaling path-
way to control cell proliferation. Since EpCAM interacts with
E-cadherin, one can imagine that in return, Hippo signaling can
be disrupted, leading to activation of YAP and downstream
transcriptional activation (Fig. 2E).

The Wnt signaling pathway is a crucial mediator of normal
organ development during embryogenesis and tissue repair;
consequently, many functions are allocated to Wnt, such as
axis patterning, cell polarity, cell-fate specification, cell prolif-
eration, and cell migration. Interestingly, regulatory elements
of the EPCAM gene promoter are responsive to transcription
factor 4 (Tcf4), a downstream effector of the Wnt pathway
(149). Owing to the frequent deregulation of the Wnt pathway

Review

G236 EpCAM AND LIVER TISSUE HOMEOSTASIS

AJP-Gastrointest Liver Physiol • doi:10.1152/ajpgi.00069.2014 • www.ajpgi.org



TCF-LEF

catenin

CELL ADHESION,
POLARITY

Claudin-7

C
D

44

MICRODOMAINS

Lr
p5

/6

Frizzled

NUMB

Notch

RBP/J

Jag/Dll

NICD

NICD

Soluble 
EpEX

?

?

?

A                               B

F

Cell 1

Cell 2

?

?

COMMUNICATION

Cell 1

Cell 2

EpICD

EpEX

TACE/ADAM17

PS2

PROLIFERATION, DIFFERENTIATION,
MIGRATION, SURVIVAL

CTF

D

C
E

pC
A

M E
pC

A
M

E
pC

A
M

E
pC

A
M

ECM

E
pC

A
M

?

Secretion
vehicles

E

E
-c

ad
he

rin

Wnt/ catenin signaling

E-cadherin-mediated
Hippo signaling

Notch signaling

catenin

Mst1/2

Lats1/2

YAP

E
-c

ad
he

rin
YAP

on
off

K
re

m
en

1

Dkk2

Lr
p5

/6

E
pC

A
M

K
re

m
en

1

Dkk2

Wnt

catenin

CELL RENEWAL, STEM CELL MAINTENANCE, CELL PROLIFERATION, 
CELL SURVIVAL, DIFFERENTIATION

Wnt

G

PROLIFERATION

E
-c

ad
he

rin

catenin

?

?
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in cancer cells and to its functions in progenitor cells (107), a
concomitant upregulation of EpCAM in these cell types may
possibly be mediated by the Wnt pathway. Recently, EpCAM
has been described to be a de-repressor of Wnt signaling in an
indirect manner (81) (see Fig. 2F). In this model, EpCAM
reduces the membrane turnover of lipoprotein receptor-related
protein 6 (Lrp6) by sequestrating Kringle-containing trans-
membrane protein 1, a gene encoding a high-affinity dickkopf
homolog 1 (DKK1) transmembrane receptor that functionally
cooperates with DKK1 to block Wnt/�-catenin signaling.
Thereby, EpCAM fosters Lrp6 retention at the membrane and
its signaling through Wnt2bb, representing a licensing factor
for the endodermal differentiation toward hepatocytes in ze-
brafish. Importantly, this study describes for the first time a
de-repressor role of EpCAM (81).

Recently, it has been described that the balance between
Notch/Wnt signaling regulates the commitment of HSPC dur-
ing liver repair (8, 25, 123). During biliary regeneration,
expression of Jagged 1 (a ligand of Notch) by myofibroblasts
stimulated Notch signaling in HSPCs and thus their biliary
specification to cholangiocytes. Alternatively, during hepato-
cyte regeneration, macrophage engulfment of hepatocyte de-
bris induced Wnt3a expression, sustaining NUMB expression
within HSPCs to promote their specification to hepatocytes (8)
(Fig. 2G). Thus converging this study (8) with the elegant work
of Lu and colleagues (81), one could imagine that EpCAM
might represent a route to switch this balance between Notch
and Wnt toward Wnt signaling.

EMERGING CONCEPTS IN THE FIELD OF HSPC BIOLOGY

Nonalcoholic fatty liver disease has become one of the most
common forms of chronic liver disease, including a wide
spectrum of pathological liver conditions, ranging from simple
hepatic fat accumulation to nonalcoholic steatohepatitis, with
or without fibrosis, eventually progressing to cirrhosis and
hepatocarcinoma (50). Liver transplantation has been thought
to be the only convincing therapy to deal with end-stage liver
disease, although it has certain disadvantages, including a high
risk of rejection. This concern has led to identification and
isolation of a source of stem-cell subpopulations with a high
potential to generate a large amount of hepatocytes for repair-
ing the damaged liver. The quest to identify resident stem cells
in the liver and to isolate and expand them with high efficiency
remains challenging, and the understanding of their biology
remains in its infancy compared with other stem-cell tissues,
such as intestine or skin. However, some consensuses have
been reached and are discussed below. Further discussion of
the data can be found in further reviews (6, 27, 31, 36, 55, 89,
91, 106, 126, 140) and references therein.

In both normal turnover of the hepatic tissue and acute
disease, the liver predominantly activates terminally differen-
tiated epithelia (i.e., biliary epithelial cells and hepatocytes) to
proliferate and repair (Fig. 3). In chronic and severe injury,
however, this capacity fails, and ductular reactions of activated
biliary epithelial cells that contain putative stem/progenitor
cells appear in the periportal region of the liver to restore both
hepatic architecture and synthetic liver function. Generally,
stem-cell niches are dynamic cellular and extracellular mi-
croenvironments that balance stem-cell activity to preserve
tissue homeostasis and repair throughout the lifespan of an

organism (63, 141). In healthy liver, the complete nature of all
components of this niche remains unclear; unlike in the intes-
tine, the cellular and acellular components of the microenvi-
ronment remain poorly described. Three-dimensional recon-
structions in human liver suggest that the progenitor microen-
vironment arises from the interface between the hepatocyte
canalicular system and the biliary tree (positive for keratin 19),
known as the canals of Hering (127), which was also identified
as the main facultative niche in the mouse (67) (see Fig. 3). The
HSPC niche is composed of different cell types (including
hepatic stellate cells, Kupffer cells, endothelial cells) (79),
ECM components, growth factors, and cytokines released by
the niche cells to help and maintain the characteristics of HSPC
and the balance among their activation, proliferation, and
differentiation (Fig. 3).

Attempts to identify putative HSPCs have assessed the
ability of these cells to differentiate toward both hepatocytic
and biliary lineages, as well as their clonogenic capacity to
look at their stem-cell potential (Fig. 3) (29, 118). Alterna-
tively, the regenerative capacity of HSPCs can be shown in
vivo using liver-repopulation assays (124, 142) or direct
lineage tracing. A number of HSPC markers have been
proposed, but none are completely specific (42). Several
proteins or activities that discriminate the HSPCs from their
surrounding cells exist; EpCAM (112, 113, 154), Prominin1
(or CD133) (108), and macrophage inhibitory cytokine-1-
1C3 (29) antibodies or a combination of these have been
used to enrich for these cells, whereas activities that are
enhanced in HSPCs, such as efflux transporter activity [e.g.,
side-population technique (43) or aldehyde dehydrogenase
activity (26)], are more intricate but can also be used to
isolate HSPCs.

The development of strategies to perturb niche compo-
nents has provided insight into the responsive nature of the
niche and offers a framework to uncover how disruption of
a normal stem-cell niche function may contribute to the
onset of the ductular reaction and its progression. For such
purposes, different liver-injury mouse models have been
used to study HSPC activation, and they are reviewed
elsewhere (27, 78, 102). Figure 3 illustrates two different
treatments: 3,5-diethoxycarbonyl-1,4-dihydrocollidine and
choline-deficient ethionine supplemented, which are often
used to activate HSPC.

In fetal and neonatal livers, the HSPCs are concentrated in
ductal plates, whereas in pediatric and adults livers, the canals
of Hering are their principal niches (15, 67, 127, 155). It should
be noted that the canals of Hering are the adult remnant of the
ductal plates containing the bipotent HSPCs. Whereas the
HSPC population is high in number in fetal livers, its number
drops drastically in adult livers. Furthermore, it has been
shown that the liver is similar to other tissues, in that regen-
erative responses in postnatal tissues parallel those occurring in
development (27, 28, 42, 155).

Furthermore, the liver is comprised of a maturational
lineage of cells that represents all maturational stages, from
naïve cells in the niche of the canal of Hering, located
periportally, progressing through the midacinar region, and
ending with the most mature cells found pericentrally (134).
The best-described maturational lineage is the hepatocytic;
the second lineage (cholangiocytic) is still in the process of
being defined. Within the hepatocytic maturational lineage,
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the parenchymal cells interact continuously with their mes-
enchymal cell partners (134). The understanding of the
intermediate stages and cues that regulate maturational
lineage in HSPC biology, as well as the symmetry between
fetal development and adult regeneration, represents a major
breakthrough in the field.

Localization of the liver epithelial compartment and those
cells with which it interacts in its microenvironment determine
HSPC specification, and the resulting changes within the ca-
nals of Hering and adjacent cells are a consequence of local
signaling cascades (8, 9) (see Fig. 3). Indeed, cell–cell signal-
ing from both hepatic stellate cells and macrophages can
influence HSPC fate via the Wnt and Notch pathways follow-
ing liver injury (77). In hepatocellular regeneration, the prog-

enies of HSPCs irradiate from the portal tracts in which they
are enclosed in laminin, which facilitates their expansion.
Upon exit from the laminin niche, these cells are subject to
differentiation cues, such as Wnt and hepatocyte growth factor,
which activate the prohepatocyte transcriptional cascade in
hepatic progenitor cells. In biliary regeneration, HSPCs emerge
in a similar manner, but they remain in the laminin ECM, in
which fibroblasts are able to influence their maturation through
activation of the Notch signaling pathway. This pathway in-
fluences the activation of the hepatocyte nuclear factor
(HNF)6/HNF1� transcriptional network to specify cholangio-
cytes correctly (8, 9).

The regenerative response in adult liver involves a hetero-
geneous population of cells containing a range of cell types
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compartment. Upon severe injury, HSPCs emerge and expand (observed by an increased number of K19� cells), contributing to liver repair. Depending
on the nature of the insult [hepatocytic vs. cholangiocytic, determined by use of different diets: choline-deficient, ethionine supplemented (CDE) vs.
3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), respectively], niche hepatic cells and ECMs are involved differently, supporting the HSPC fate.
HSCs/myofibroblasts (MF) and collagen deposition are associated with HSPCs in biliary regeneration [biliary epithelial cells (BECs)] and KCs with
hepatocytic regeneration. Isolation/purification by cell sorting (based on differential marker expression or functions) and subsequent cell culturing
demonstrate the “plasticity” of those cells, containing a subpopulation with stem-cell features, which are defined in vitro by clonogenicity and bilineage
differentiation potential and/or in vivo by transplantation assays. Genetic-lineage tracing is used to identify the fate or the origin of these HSPCs, whereas
“omics” analysis is used for their characterization. PV, portal vein; CV, central vein; MIC1-1C3, macrophage inhibitory cytokine-1-1C3; OPN,
osteopontin; Sox9, sex-determining region Y-box 9; Trop2, trophoblast cell-surface antigen 2; Foxl1, forkhead box l1; Lgr5, leucine-rich repeat-
containing G protein-coupled receptor 5; ALDH, aldehyde dehydrogenase; ABCG2, ATP-binding cassette subfamily G, member 2.
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from primitive progenitors to more committed hepatocyte-like
cells, illustrating different cell-fate transitions and lineage
reprogramming. Interestingly, during this reprogramming, the
ductular cells express particular markers that are useful for
progenitor cell isolation [such as forkhead box l1 (Foxl1),
TROP2, neural CAM (N-CAM), Delta-like 1 homolog, neigh-
bor of Punc E11, and leucine-rich repeat-containing G protein-
coupled receptor 5]. Nevertheless, the function of these mo-
lecular markers remains obscure. The trigger for the formation
of the ductular reaction and the mechanisms controlling mi-
gration of HSPCs or the detachment of cells from the cellular
or acellular components of the niche upon liver repair are not
well understood. One could imagine that the molecular
switches may play a significant role during liver development
and regeneration. Likewise, additional molecular switches
have been observed already and might regulate redistribution
of some metabolic functions throughout the hepatic lobule
(e.g., gluconeogenesis, fatty acid oxidation, glutamine synthe-
tase) or deal with the protein responsible for the maintenance
of the hepatic zonation (e.g., �-catenin, E-/N-cadherins) upon
liver injury and repair.

Recently, two elegant reports have investigated the potential
importance of this cadherin-based molecular switch with re-
spect to the modulation of the formation of ductular reaction in
liver injury (117, 132). In normal liver, N-CAM marks biliary
cells and HSPCs but not mature hepatocytes. N-CAM mediates
cell–cell adhesion by multiple modes, including homo- and
heterophilic interactions and cell–matrix contacts. These inter-
actions are modified by the post-translational modification of
N-CAM with polysialic acid (or polySial-NCAM). Due to the
size of the polysialic acid chains on N-CAM, N-CAM func-
tions change from adhesive to antiadhesive (57). Whereas in
normal liver, N-CAM contributes to the stable settlement of
HSPCs, subsequent to injury, polysialic acid is produced and
changes N-CAM function by weakening cell–cell and cell–
matrix interactions, facilitating the migration (132). During
differentiation into hepatocytes, polySial-NCAM and N-CAM
are cleaved from the cell surface of the HSPC descendants,
reducing migration of ductular reaction into parenchyma but
allowing their hepatocyte differentiation (132). Previously, it
has been demonstrated that Foxl1 is a marker of HSPCs found
in the injured liver and that these Foxl1�-tagged cells could be
isolated, expanded, and differentiated toward the cholangio-
cyte and hepatocyte lineages in vitro (109, 118) and in vivo
(117). Recently, the authors demonstrated that specific ab-
lation of Foxl1-positive HSPCs and their descendants impair
recovery of the liver from toxic injury, illustrating that the
cells marked by Foxl1 are required for development of both
lineages (117).

Obviously, HSPCs have the potential to provide patients
with a comprehensive and most biological robust regenera-
tion and might also be able to repopulate exhausted niches
in the regenerating liver. To this end, detailed knowledge of
the biology of HSPCs, particularly the understanding of
molecular switches involved in processes of HSPC mainte-
nance and differentiation into mature liver cells, is neces-
sary. Only with the identification of these molecular
switches can we hope to design rationally compounds
against these signals to enhance the regenerative process in
the adult liver.

EpCAM AND ITS MULTIPLE FACETS DURING LIVER
DEVELOPMENT, HOMEOSTASIS, AND REGENERATIVE
RESPONSES

Normal epithelia express EpCAM at a variable but generally
lower level than carcinoma cells (5, 128, 129). It is only
recently that experimental approaches on EpCAM function
shifted to nonmalignant cells and to the potential role(s) of
EpCAM in normal morphogenesis and organogenesis (128,
129). With respect to liver, studies from Reid and collaborators
(112, 113, 134, 155) have investigated the histological location
of EpCAM in human livers from fetal to adult donors. In fetal
livers, EpCAM expression was found in the ductal plate cells
as well as in parenchymal cells, throughout the developing
hepatic lobule (155). EpCAM was expressed most abundantly
in ductal plate cells, where membranous and cytoplasmic
staining was evident. By contrast, expression of EpCAM was
restricted to a membranous pattern in human hepatoblasts. In
neonatal livers, EpCAM expression is similar to that observed
in fetal livers, in that there is a recognizable expression in
ductal plates around portal tracts and a lack of expression of
EpCAM in mature hepatocytes (112, 113, 155). In pediatric
livers, the ductal plate is no longer apparent. Rather, one
observes canals of Hering near the portal triads, which are
surrounded by mature hepatocytes. Interestingly, human hepa-
toblasts are tethered to the ends of the canals of Hering, with
EpCAM expression exclusively membranous, whereas the
remnant ductal plate cells (forming the actual Hering canals at
that stage) are expressing EpCAM in the cytoplasm and the
plasma membrane. In adult liver, biliary epithelial cells/HSPCs
(either forming the bile ducts or the canals of Hering), but not
hepatocytes, are found to express EpCAM (112, 113, 155).
EpCAM expression was cytoplasmic and membranous in the
interlobular bile duct, ductules, and canals of Hering. The
canals of Hering are strongly and intensively positive for
EpCAM (and cytokeratin 19). Human hepatoblasts with mem-
branous staining for EpCAM localize near the canals of Hering
and are sometimes found tethered to the ends of the canals of
Hering. The percentage of human EpCAM-positive hepato-
blasts declines rapidly after birth, such that the hepatoblasts
constitute 	0.01% of the parenchyma in pediatric and adult
livers. These findings, elegantly described in human liver
sections (112, 113, 155), match with those established previ-
ously, in which the percentages of human hepatoblasts and
HSPCs were defined by flow cytometric analyses (113).

Complementary studies using murine hepatic tissues showed
that hepatoblasts exhibit an analogous, dynamic expression of
EpCAM during liver development. Early studies conducted by
de Boer et al. (23) in healthy adult livers illustrated that
EpCAM was found exclusively on biliary epithelial cells and
HSPCs, although it was present in the great majority of fetal
liver hepatocytes of 8-wk-old embryos. Later, the group of
Miyajima (125) investigated the expression of EpCAM at
different stages of mouse liver development. They found that
EpCAM was highly expressed at the onset of fetal liver
organogenesis and decreased gradually along with hepatic
differentiation to the point where it was restricted to biliary
epithelial cells/HSPCs but entirely lacking in hepatocytes at
later stages (125). Tanaka and colleagues (101, 125) were then
the first group to show that murine EpCAM is the earliest and
a transient marker for hepatoblasts during hepatogenesis. Fur-
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thermore, in in vitro studies, different groups reported that
EpCAM is expressed on HSPCs isolated from mouse and rat
(26, 112, 153, 154), and upon in vitro differentiation condi-
tions, those cells give rise to hepatocytes that are devoid of
EpCAM expression (61, 63, 66, 81–83). In addition, when
freshly isolated human EpCAM-positive cells (from either fetal
or postnatal livers) were transplanted to nonobese diabetic/
severe combined immunodeficiency (NOD/SCID) recipient
mice, they engrafted and repopulated the liver tissue and lost
EpCAM expression (113).

Pathological changes of the liver are accompanied by a
strong re-expression of EpCAM, for example in hepatocellular
carcinomas, where EpCAM serves as a marker for cancer stem
cells (151). Indeed, Yamashita and colleagues (151) have
shown that EpCAM�/�-fetoprotein tumor cells display hepatic
cancer stem-cell traits, including the abilities to self-renew and
differentiate and to be able to initiate highly invasive hepato-
cellular carcinoma in NOD/SCID mice. Upon massive liver
necrosis, regenerative responses involve the expansion of hu-
man EpCAM-positive HSPCs, whereas no additional EpCAM
positivity in any other cell types is observed (155). In contrast,
regeneration in biliary cirrhosis involves human hepatoblasts
with a membranous expression of EpCAM, concomitant to the
expansion of human HSPCs (155). During liver injury (chronic
hepatitis C/B), EpCAM marks those hepatocytes, freshly de-
rived from stem cells, but is lacking on those derived from
pre-existing hepatocytes, thus suggesting an association of
EpCAM with multipotent progenitors (152). Indeed, hepato-
cytes that are positive for EpCAM are located close to ductular
reactions and have a longer telomere length than EpCAM-
negative hepatocytes, suggesting their origin from a slow-
cycling HSPC.

Taken together, data obtained from both mouse and human
tissues suggest that hepatocytic differentiation is accompanied
by a transition from an EpCAM-positive to an EpCAM-
negative state of cells, which mostly recapitulates essential
stages of embryonic hepatogenesis. Consequently, the deci-
phering of the association between EpCAM expression and its
functions by focusing on how it is regulated with regard to
HSPC activation may represent a new axis for understanding
HSPC biology.

A COMPLEX MECHANISM TO SWITCH EpCAM EXPRESSION

Membranous or RIPed EpCAM. The accumulation of data
on the biology of EpCAM has offered explanations on how to
switch EpCAM on and off at the functional or expression level.
Furthermore, increasing evidence indicates that subcellular
localization of EpCAM is critical. These fine-tuned regulatory
mechanisms may control the distribution of EpCAM and
thereby its functionality as a de-repressor of hepatocytic dif-
ferentiation and a pluripotency-associated factor. A general
overview of these potential mechanisms is summarized in Figs.
4 and 5.

Transcriptional modifications are main mechanisms used to
switch on/off any gene; hypothetically, one could imagine that
similar scenarios are happening as well for EpCAM. Both
methylation of DNA at cytosine residues within CpG islands as
well as trimethylation of lysine residues of histone 3 have been
reported to impact the transcription of the EPCAM gene in
cancer and human embryonic stem cells, respectively (82, 121,

138). Besides these epigenetic chromatin modifications, post-
translational changes are also reported to influence the expres-
sion of EpCAM. For instance, glycosylation of EpCAM is
required for prolonged plasma membrane retention (Fig. 4).
Indeed, three independent N-glycosylation sites at asparagine
residues N74, N111, and N198 in the EpEx part dictate the
half-life of EpCAM at the cell surface. Especially, mutation of
asparagine in position 198 resulted in a severely reduced
retention of EpCAM at the plasma membrane from 
21 to 7 h
(95). The regulation of levels and composition of glycosylation
might impact the subcellular location and stability of EpCAM.
Although it has never been demonstrated experimentally, re-
sults from therapeutic antibodies and cleavage studies suggest
that endocytosis is an additional means by which the EpCAM
expression can be regulated (Fig. 4); e.g., the killing of cells
using toxin-conjugated EpCAM-specific antibodies is a long-
accepted therapeutic option (119) despite a formal lack of
proof of endocytosis of EpCAM. Along the same line, cleavage
of murine EpCAM was reported to be fulfilled by ADAM
proteases at the plasma membrane but additionally, by the
�-secretase BACE-1 (48). However, BACE-1 is active at a pH
optimum of 4.5 and therefore, requires the acidic environment
of endo- and lysosomes, hence suggesting the endocytosis of
murine EpCAM.

The pleiotropic functions of EpCAM can be allocated to the
full-length protein, as well as to EpCAM-derived fragments,
which are generated upon RIP. Dynamic signaling through
EpCAM not only requires the presence or absence of full-
length EpCAM at the cellular membranes but also is contingent
on the varying rates of the formation of EpCAM-derived
fragments that have their own regulatory properties and in
changes in the association of EpCAM with interaction partners
(Fig. 4). Generation of biologically active proteins by RIP
represents a fascinating strategy for cellular signaling, which is
highly conserved from bacteria to humans. This mechanism is
involved, not only in degrading membrane-spanning segments
(also termed the membrane proteasome) but also, in generating
messengers that elicit biological responses (73). The first
cleavage of EpCAM results in shedding of its ectodomain
(EpEx; Fig. 5) and can be conducted by at least two types of
secretases: i.e., �- and �-secretase. The second cleavage, which
is strictly dependent on the first, occurs within the transmem-
brane domain, resulting in secretion of a small peptide (Ep-
A�-like) and the release of the EpICD into the cytosol. In
human carcinoma cells, EpICD can translocate further into the
nucleus and act as a signaling molecule to regulate the tran-
scription of target genes. The RIP itself is tightly regulated (51,
73), and indeed, cellular processes affecting the recruitment,
activation, or polarized secretion of sheddases can influence
shedding (Fig. 5).

Altogether, proteins involved in the retention of EpCAM in
intracellular or membranous compartments, as well as mecha-
nisms orchestrating RIP of EpCAM, need further investigation.

EpCAM expression upon liver repair. With the consider-
ation of the pleiotropic functions of EpCAM (Fig. 2), it is not
surprising to find that the promotion of its sustained localiza-
tion at the plasma membrane or favoring of its retention in the
cytoplasm by endocytosis—accelerating the degradation of its
EpICD variants to prevent any signaling or change its mem-
branous partnership—may quickly change its function and
might occur to permit the HSPCs to be released from naivety
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and to differentiate (Fig. 6). Alternatively, with the weakening
of E-cadherin cell–cell adhesion, EpCAM might foster higher
cell plasticity within epithelial tissues, which in turn, may help
promote motility during the HSPC activation.

It is tempting to hypothesize that proteolytic cleavage of
EpCAM may appear as an alternate mechanism to fine-tune the
plasticity of EpCAM-expressing cells and that it might influ-
ence the fate or the biological activity (proliferation vs. differ-
entiation) of stem/progenitor cells during differentiation and
regeneration (Fig. 6). The use of a �-secretase inhibitor {i.e.,
N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-bu-
tyl ester} by Boulter et al. (8) in their in vitro and in vivo
experiments decreased Notch activity in the HSPCs (this can
also be achieved through repression of NUMB) and inhibited
accumulation of hepatocytic progenitors, whereas it enhanced
outgrowth of progenitors with a biliary phenotype. Whereas
Notch signaling inhibition was the target, EpCAM signaling
could be influenced as well in this experimental setting, since
EpCAM also belongs to the same RIP substrates as Notch (69).
The observed differentiation events, induced by �-secretase
inhibition, might therefore reflect cleavage inhibition of Notch
but also EpCAM and even other RIP family substrates.

On the other hand, alternative considerations on this tran-
sient change of EpCAM expression might be due to additional

scenarios that would need further investigation and are briefly
described as follows.

Although the liver is a central metabolic organ in adults, it
mainly functions as a transient site for definitive hematopoiesis
in fetuses. Although the majority of liver metabolic functions
appears peri- or postnatally, hematopoiesis-supporting activity
of the liver is lost during late-fetal development. Finally,
hematopoietic cells move into the bone marrow around the
perinatal stage to constitute the adult-type hematopoietic sys-
tem. With the consideration of the clear change of liver
function from these two developmental stages, in which the
radical change of hepatic EpCAM expression occurs, it would
be rational to observe that the presence of EpCAM on the
precursors of hematopoietic cells may play an important role
during liver development and may be an important clue in fetal
hematopoiesis. One could imagine that EpCAM might be used
as a single anchoring protein for the newly synthetized, imma-
ture hematopoietic cells, allowing them to reside within a niche
in this transient organ before migrating into the bone marrow
at the adult age, when hepatocytes lose EpCAM expression. It
has been demonstrated that bone marrow erythroid progenitor
cells express EpCAM (32), and interestingly, hematopoietic
cells synthetize high levels of oncostatin M, which is a strong
inducer of the maturation of the hepatocyte lineage (90) and in
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turn, terminates embryonic hematopoiesis, promoting reloca-
tion of hematopoietic cells (65). Since the symmetry between
fetal development and adult regeneration has been described
and with the knowledge that the ductular reaction is invariably
accompanied by inflammatory cells recruited from the bone
marrow, the re-expression of EpCAM on HSPC descendants in
adult liver might also reflect a particular relationship between
the two cellular compartments. In fact, recent work by Bird et
al. (7) has demonstrated that the exogenous application of
mature bone marrow-derived macrophages is sufficient to in-
duce HSPC proliferation in the absence of any underlying
disease pathology, once again, reiterating that inflammation
and epithelial repair are intrinsically linked.

Another striking comparison relates to the expression pattern
of EpCAM in the colon, where EpCAM is expressed in stem
cells at the base of crypts but in contrast to the liver, remains
expressed in fully differentiated colon mucosa (148). In a small
cohort, cleavage of EpCAM and nuclear translocation of
EpICD, which was associated with the induction of prolifera-
tion, were seen primarily in colon carcinomas and not in
normal mucosa (83). Contrary to what is seen in the liver,
colon epithelium displays a constant turnover, which might be,
in parts, driven by the option to activate EpCAM signaling on
the plasma membrane. Retention of EpCAM on the cell surface
of differentiated cells might thus allow for a rapid, EpCAM-
dependent response when necessary.

Another conceivable scenario for the function of EpCAM in
liver repair is that HSPCs may require the (re-)expression of
EpCAM at their membrane to mature successfully and restric-
tively toward the hepatocytic lineage in response to the niche
cell signals (8, 81). Although mesenchymal stromal and cellu-
lar partners are the chief orchestrators for these cell-fate deci-
sions (8), EpCAM might confer the ability to translate the
signal that progenitors sense from their neighborhood by reg-
ulating the bioavailability of receptors (i.e., sequestration of
corepressor), as was shown for Lrp6 by Lu et al. (81). In such
a scenario, the presence of EpCAM on the plasma membrane
in developing hepatocytes would foster Wnt signaling to dif-
ferentiate further toward hepatocytes instead of biliary tract
cells (Fig. 6). The unraveling of EpCAM interactors that allow
higher-order ligand-receptor complexes at the plasma mem-
brane to fine-tune their functions, is therefore of great impor-
tance.

CAM-mediated adhesion may indirectly promote receptor/
ligand signaling by bringing the plasma membranes of oppos-
ing cells together and forcing interaction between a ligand on
one cell and its receptor on the other cell. In particular,
EpCAM has been found to co-purify with glycolipid-enriched
lipid microdomains (22, 68, 114) that have the potential to
organize signaling complexes at the cell surface. In that con-
text, one can imagine that once located (or redirected by some
mechanisms) in those microdomains, EpCAM might easily
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interfere with important signaling pathways, such as those for
Wnt, Notch, and Hippo.

EpCAM ON PROGENITORS OF THE PERIBILIARY GLANDS

Recently, peribiliary glands have been described to hold
immature HSPCs in the intra- and extrahepatic biliary trees.
The description of the latter compartment is beyond the scope
of the review but comprehensively reviewed elsewhere (11–13,
17, 144). The notion of EpCAM driving liver differentiation is
in line with recent data provided by Reid and collaborators (12,
13) concerning biliary tree stem cells. Multiple populations of
very primitive stem cells have been identified in the peribiliary
glands of the biliary tree, located near the fibromuscular layer
and in especially high numbers in the hepatopancreatic com-
mon duct. These primitive stem-cell populations have all of the
transcription factors required for both liver and pancreas de-
velopment and high-level expression of pluripotency genes.
Surprisingly, they do not express EpCAM. Expression of
EpCAM is found only in cells in the peribiliary glands that are
intermediate in position between those near the fibromuscular
layers and those at the lumen of the bile ducts, a site where
markers for mature cells are expressed. Moreover, EpCAM is
expressed on cells progressing toward liver and pancreas (144),
indicating that its expression does not discriminate hepatic
from pancreatic fate but rather indicates that cells are at an
intermediate stage of differentiation from HSPCs to mature
cells. One could speculate that the absence of EpCAM in
multipotent stem cells from peribiliary glands may prevent the
occurrence of maturation or commitment to hepatic (or pan-
creatic) lineages in the peribiliary gland niches, where they are
distant from sites of actual hepatic or pancreatic injury, unlike
the intraorgan stem-cell niches in close proximity to those
sites.

PERSPECTIVES OF EpCAM IN CLINICAL USE AND
REGENERATIVE MEDICINE

Due to a shortage in the supply of human donor organs, adult
(and fetal) HSPCs are at the forefront of cell-therapy applica-
tions, and more particularly, the use of EpCAM positivity on
those particular cells offers an enormous impulse in the regen-
erative medicine field. Briefly, these include the following
details.

1) The yield of harvesting the EpCAM� cells is highly
efficient from adult livers (
1,000,000 cells/g tissue) (2, 113),
particularly if we consider these cells as potential candidates
for liver cell therapies in patients with diverse liver conditions.
EpCAM� cells have been found in human livers of all donor
ages and pathologies, indicating that EpCAM is likely to be an
appropriate and efficient marker to obtain cell suspensions
enriched in HSPCs.

2) EpCAM� cells successfully repopulate the liver, as Reid
and associates (113, 143) have demonstrated. Purified human
EpCAM� HSPCs from fetal or postnatal livers are able to
engraft the livers of immunocompromised hosts (with or with-
out prior injury) and to give rise to mature human liver
parenchymal cells.

3) Resistance to hypoxia and ischemia. Adult EpCAM�

HSPCs, isolated from human livers when exposed to ischemia,
were viable and when cultured on plastic dishes, were able to
form colonies of rapidly expanding cells, confirming their

extraordinary tolerance to ischemia and illustrating the possi-
bility of using liver samples from a non-heart-beating donor (2,
58, 122, 145).

4) Improvement of cryopreservation strategies. In cell ther-
apy, the biggest challenge is to have cells readily available for
clinical applications, which relies on unpredictable parameters:
acquiring fresh donor organs at the right time. Accordingly,
procedures have been established to develop effective cryo-
preservation protocols before transplantation, allowing cells to
be stored for use as an off-the-shelf product whenever the
demand is required. A study has provided a successful method
for cryopreservation of EpCAM�–HSPCs based on the use of
hyaluronan-supplemented buffers (135), where the retention of
their stem-cell phenotypic traits (i.e., expansion ability, adhe-
sion, and colony formation) has been controlled.

5) Improvement of delivery and retention of transplanted
cells into the liver. In cell therapy, another major issue is the
incapacity of controlling the transplanted cells to home into the
organ of interest (105, 133, 135, 137). A way of achieving cell
retention involves “grafting strategies,” by embedding cells in
biomaterials that concentrate cells in the target tissue, provid-
ing a beneficial microenvironment (80). Hyaluronan-based
grafts containing EpCAM� cells radically improved the en-
graftment efficiency over current cell-transplantation ap-
proaches (136). Of importance is that grafting significantly
reduced the extent of ectopic cell distribution.

6) Improvement in analysis of hepatic targeting and biodis-
tribution of HSPCs by using EpCAM� cells. Cell-targeting and
engraftment of transplanted cells in desired organ compart-
ments are critical. Therefore, appropriate and noninvasive
means of determining the distribution of HSPCs will benefit
cell-therapy applications. Lately, indium-111-oxine labeling of
human fetal EpCAM� progenitors has been described to be a
successful method to assess the targeting of transplanted cells
into the liver (19), preferentially when combined with intra-
portal transplantation. Complementary data, elegantly illus-
trated by McClelland et al. (87), present a promising method
for in vivo cell MRI tracking, enabling noninvasive monitoring
of the HSPCs after transplantation.

7) Use of anti-EpCAM antibodies in cancer research. Since
EpCAM is a pan-epithelial differentiation antigen that is ex-
pressed on almost all carcinomas and most importantly, local-
izes at the cell surface, it has been an attractive target for
therapeutic applications in cancer treatment (54, 103). So far,
several strategies have been deployed to treat cancer using
EpCAM targeting, including diabodies, MAb, and trifunctional
antibodies, with the most well-known being Catumaxomab,
Edrecolomab, and Adecatumumab, but so far, the results are
disappointing (33, 97).

8) Use of other tissues for acquiring EpCAM� stem/progen-
itor cells. With their discovery in the extrabiliary tree tissues
(11–13, 16, 17), additional resources of EpCAM� cells are
now available. Importantly, in in vitro-culturing conditions,
these cells demonstrate clonogenic expansion with mainte-
nance of stemness and also generate mature cells of hepatobi-
liary and pancreatic endocrine lineages.

9) Use of EpCAM� stem/progenitor cells for other purposes.
With their potential to generate pancreatic endocrine cells (12,
13, 16, 144), the EpCAM� cells offer hope for saving diabetic
patients (61).
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CONCLUSION

Although the strict molecular footprint of hepatic stem cells
still remains vague (27), the newly described roles of EpCAM
seem to indicate further, broader functions of that protein in
endodermal stem cell biology rather than merely being a
simple tool for their identification and isolation. Critical ap-
praisal on its biology has illustrated different aspects of
EpCAM, and compelling data indicate that different mecha-
nisms exist to switch on/off EpCAM expression or function.
Interestingly, an involvement of the EpCAM cleavage prod-
ucts, such as EpEx, the Ep-A�-like fragment, and EpICD, in
the transcriptional and post-translational regulation of mole-
cules is essential in liver homeostasis or is conceivable in
response to injury and merits further attention. The understand-
ing of the functions of EpCAM in the activation of stem cells
within the biliary tree and their progression toward a liver or
pancreatic fate are parts of a journey that has just begun, but
already, additional research in this area is justified, given the
growing experimental and clinical data supporting a role for
the pathway in regulating outcomes of liver injury (26, 44, 60,
62, 70, 113, 152).
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