11 research outputs found
Meta-environment and executable meta-language using smalltalk: an experience report
Object-oriented modelling languages such as EMOF are often used to specify domain specific meta-models. However, these modelling languages lack the ability to describe behavior or operational semantics. Several approaches have used a subset of Java mixed with OCL as executable meta-languages. In this experience report we show how we use Smalltalk as an executable meta-language in the context of the Moose reengineering environment. We present how we implemented EMOF and its behavioral aspects. Over the last decade we validated this approach through incrementally building a meta-described reengineering environment. Such an approach bridges the gap between a code-oriented view and a meta-model driven one. It avoids the creation of yet another language and reuses the infrastructure and run-time of the underlying implementation language. It offers an uniform way of letting developers focus on their tasks while at the same time allowing them to meta-describe their domain model. The advantage of our approach is that developers use the same tools and environment they use for their regular tasks. Still the approach is not Smalltalk specific but can be applied to language offering an introspective API such as Ruby, Python, CLOS, Java and C
Pervasive Software Visualizations
A picture tells a thousand words. We all know that. Then why are our development tools showing mainly text with so much obstinacy? Even when visualizations do make it into our tools, they typically do not make it past the periphery. Something is deeply wrong. We argue that visualizations must become pervasive in software development, and to accommodate this goal, the integrated development environments must change significantly
Maispion: A Tool for Analysing and Visualizing Open Source Software Developer Communities
We present Maispion, a tool for analysing software developer communities. The tool, developed in Smalltalk, mines mailing list and version repositories, and provides visualizations to provide insights into the ecosystem of open source software (OSS) development. We show how Maispion can analyze the history of medium to large OSS communities, by applying our tool to three well-known open source projects: Moose, Drupal and Python
Meta-environment and executable meta-language using smalltalk: an experience report
Object-oriented modelling languages such as EMOF are often used to specify domain specific meta-models. However, these modelling languages lack the ability to describe behavior or operational semantics. Several approaches have used a subset of Java mixed with OCL as executable meta-languages. In this experience report we show how we use Smalltalk as an executable meta-language in the context of the Moose reengineering environment. We present how we implemented EMOF and its behavioral aspects. Over the last decade we validated this approach through incrementally building a meta-described reengineering environment. Such an approach bridges the gap between a code-oriented view and a meta-model driven one. It avoids the creation of yet another language and reuses the infrastructure and run-time of the underlying implementation language. It offers an uniform way of letting developers focus on their tasks while at the same time allowing them to meta-describe their domain model. The advantage of our approach is that developers use the same tools and environment they use for their regular tasks. Still the approach is not Smalltalk specific but can be applied to language offering an introspective API such as Ruby, Python, CLOS, Java and C#
GTInspector: A Moldable Domain-Aware Object Inspector
Understanding the run-time behaviour of object-oriented applications entails the comprehension of run-time objects. Traditional object inspectors favor generic views that focus on the low-level details of the state of single objects. While universally applicable, this generic approach does not take into account the varying needs of developers that could benefit from tailored views and exploration possibilities. GTInspector is a novel moldable object inspector that provides different high-level ways to visualize and explore objects, adapted to both the object and the current developer need
The Moldable Inspector
Object inspectors are an essential category of tools that allow developers to comprehend the run-time of object-oriented systems. Traditional object inspectors favor a generic view that focuses on the low-level details of the state of single objects. Based on 16 interviews with software developers and a follow-up survey with 62 respondents we identified a need for object inspectors that support different high-level ways to visualize and explore objects, depending on both the object and the current developer need. We propose the Moldable Inspector, a novel inspector model that enables developers to adapt the inspection workflow to suit their immediate needs by making the inspection context explicit, providing multiple interchangeable domain-specific views for each object, and supporting a workflow that groups together multiple levels of connected objects. We show that the Moldable Inspector can address multiple kinds of development needs involving a wide range of objects
Practical domain-specific debuggers using the Moldable Debugger framework
Understanding the run-time behavior of software systems can be a challenging activity. Debuggers are an essential category of tools used for this purpose as they give developers direct access to the running systems. Nevertheless, traditional debuggers rely on generic mechanisms to introspect and interact with the running systems, while developers reason about and formulate domain-specific questions using concepts and abstractions from their application domains. This mismatch creates an abstraction gap between the debugging needs and the debugging support leading to an inefficient and error-prone debugging effort, as developers need to recover concrete domain concepts using generic mechanisms. To reduce this gap, and increase the efficiency of the debugging process, we propose a framework for developing domain-specific debuggers, called the Moldable Debugger, that enables debugging at the level of the application domain. The Moldable Debugger is adapted to a domain by creating and combining domain-specific debugging operations with domain-specific debugging views, and adapts itself to a domain by selecting, at run time, appropriate debugging operations and views. To ensure the proposed model has practical applicability (i.e., can be used in practice to build real debuggers), we discuss, from both a performance and usability point of view, three implementation strategies. We further motivate the need for domain-specific debugging, identify a set of key requirements and show how our approach improves debugging by adapting the debugger to several domains
Spotter: towards a unified search interface in IDEs
Program comprehension requires developers to reason about many kinds of highly interconnected software entities. Dealing with this reality prompts developers to continuously intertwine searching and navigation. Nevertheless, most integrated development environments (IDEs) address searching by means of many disconnected search tools, making it difficult for developers to reuse search results produced by one search tool as input for another search tool. This forces developers to spend considerable time manually linking disconnected search results. To address this issue we propose Spotter, a model for expressing and combining search tools in a unified way. The current implementation shows that Spotter can unify a wide range of search tools. More information about Spotter can be found at scg.unibe.ch/research/moldablespotte