25 research outputs found

    Rif1 Supports the Function of the CST Complex in Yeast Telomere Capping

    Get PDF
    Telomere integrity in budding yeast depends on the CST (Cdc13-Stn1-Ten1) and shelterin-like (Rap1-Rif1-Rif2) complexes, which are thought to act independently from each other. Here we show that a specific functional interaction indeed exists among components of the two complexes. In particular, unlike RIF2 deletion, the lack of Rif1 is lethal for stn1ΔC cells and causes a dramatic reduction in viability of cdc13-1 and cdc13-5 mutants. This synthetic interaction between Rif1 and the CST complex occurs independently of rif1Δ-induced alterations in telomere length. Both cdc13-1 rif1Δ and cdc13-5 rif1Δ cells display very high amounts of telomeric single-stranded DNA and DNA damage checkpoint activation, indicating that severe defects in telomere integrity cause their loss of viability. In agreement with this hypothesis, both DNA damage checkpoint activation and lethality in cdc13 rif1Δ cells are partially counteracted by the lack of the Exo1 nuclease, which is involved in telomeric single-stranded DNA generation. The functional interaction between Rif1 and the CST complex is specific, because RIF1 deletion does not enhance checkpoint activation in case of CST-independent telomere capping deficiencies, such as those caused by the absence of Yku or telomerase. Thus, these data highlight a novel role for Rif1 in assisting the essential telomere protection function of the CST complex

    Replacement of a NH3 by an iminoether in transplatin makes an antitumor drug from an inactive compound

    No full text
    To investigate the modifications of antitumor activity and DNA binding mode of transplatin after replacement of one nonleaving group NH(3) by an iminoether group, trans-[PtCl(2)(Z-HN=C(OMe)Me)(NH(3)] and trans-[PtCl(2)(E-HN=C(OMe)Me)(NH(3)] complexes (differing in the Z or E configuration of iminoether, and abbreviated mixed Z and mixed E, respectively), have been synthesized. In a panel of human tumor cell lines, both mixed Z and mixed E show a cytotoxic potency higher than that of transplatin, the mean IC(50) values being 103, 37, and 215 microM, respectively. In vivo mixed Z is more active and less toxic than mixed E in murine P388 leukemia and retains its efficacy against SK-OV-3 human cancer cell xenograft in nude mice. In the reaction with naked DNA, mixed Z forms monofunctional adducts that do not evolve into intrastrand cross-links but close slowly into interstrand cross-links between complementary guanine and cytosine residues. The monofunctional mixed Z adducts are removed by thiourea and glutathione. The interstrand cross-links behave as hinge joints, increasing the flexibility of DNA double helix. The mixed Z, transplatin, and cisplatin interstrand cross-links, as well as mixed Z monofunctional adducts are not specifically recognized by HMG1 protein, which was confirmed to be able to specifically recognize cisplatin d(GpG) intrastrand cross-links. These data demonstrate that the DNA interaction properties of the antitumor-active mixed Z are very similar to those of transplatin, thus suggesting that clinical inactivity of transplatin could not depend upon its peculiar DNA binding mode

    The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats

    No full text
    The study of the proteins that bind to telomeric DNA in mammals has provided a deep understanding of the mechanisms involved in chromosome-end protection. However, very little is known on the binding of these proteins to nontelomeric DNA sequences. The TTAGGG DNA repeat proteins 1 and 2 (TRF1 and TRF2) bind to mammalian telomeres as part of the shelterin complex and are essential for maintaining chromosome end stability. In this study, we combined chromatin immunoprecipitation with high-throughput sequencing to map at high sensitivity and resolution the human chromosomal sites to which TRF1 and TRF2 bind. While most of the identified sequences correspond to telomeric regions, we showed that these two proteins also bind to extratelomeric sites. The vast majority of these extratelomeric sites contains interstitial telomeric sequences (or ITSs). However, we also identified non-ITS sites, which correspond to centromeric and pericentromeric satellite DNA. Interestingly, the TRF-binding sites are often located in the proximity of genes or within introns. We propose that TRF1 and TRF2 couple the functional state of telomeres to the long-range organization of chromosomes and gene regulation networks by binding to extratelomeric sequences

    Analyses of Candida Cdc13 Orthologues Revealed a Novel OB Fold Dimer Arrangement, Dimerization-Assisted DNA Binding, and Substantial Structural Differences between Cdc13 and RPA70

    No full text
    The budding yeast Cdc13-Stn1-Ten1 complex is crucial for telomere protection and has been proposed to resemble the RPA complex structurally and functionally. The Cdc13 homologues in Candida species are unusually small and lack two conserved domains previously implicated in telomere regulation, thus raising interesting questions concerning the mechanisms and evolution of these proteins. In this report, we show that the unusually small Cdc13 homologue in Candida albicans is indeed a regulator of telomere lengths and that it associates with telomere DNA in vivo. We demonstrated high-affinity telomere DNA binding by C. tropicalis Cdc13 (CtCdc13) and found that dimerization of this protein through its OB4 domain is important for high-affinity DNA binding. Interestingly, CtCdc13-DNA complex formation appears to involve primarily recognition of multiple copies of a six-nucleotide element (GGATGT) that is shared by many Candida telomere repeats. We also determined the crystal structure of the OB4 domain of C. glabrata Cdc13, which revealed a novel mechanism of OB fold dimerization. The structure also exhibits marked differences to the C-terminal OB fold of RPA70, thus arguing against a close evolutionary kinship between these two proteins. Our findings provide new insights on the mechanisms and evolution of a critical telomere end binding protein

    Enhanced electrostatic force microscopy reveals higher-order DNA looping mediated by the telomeric protein TRF2

    Get PDF
    Shelterin protein TRF2 modulates telomere structures by promoting dsDNA compaction and T-loop formation. Advancement of our understanding of the mechanism underlying TRF2-mediated DNA compaction requires additional information regarding DNA paths in TRF2-DNA complexes. To uncover the location of DNA inside protein-DNA complexes, we recently developed the Dual-Resonance-frequency-Enhanced Electrostatic force Microscopy (DREEM) imaging technique. DREEM imaging shows that in contrast to chromatin with DNA wrapping around histones, large TRF2-DNA complexes (with volumes larger than TRF2 tetramers) compact DNA inside TRF2 with portions of folded DNA appearing at the edge of these complexes. Supporting coarse-grained molecular dynamics simulations uncover the structural requirement and sequential steps during TRF2-mediated DNA compaction and result in folded DNA structures with protruding DNA loops as seen in DREEM imaging. Revealing DNA paths in TRF2 complexes provides new mechanistic insights into structure-function relationships underlying telomere maintenance pathways
    corecore