2,269 research outputs found

    Fujita modified exponent for scale invariant damped semilinear wave equations

    Get PDF
    The aim of this paper is to prove a blow-up result of the solution for a semilinear scale invariant damped wave equation under a suitable decay condition on radial initial data. The admissible range for the power of the nonlinear term depends both on the damping coefficient and on the pointwise decay order of the initial data. In addition, we give an upper bound estimate for the lifespan of the solution. It depends not only on the exponent of the nonlinear term and not only on the damping coefficient but also on the size of the decay rate of the initial data

    Young and intermediate-age massive star clusters

    Full text link
    An overview of our current understanding of the formation and evolution of star clusters is given, with main emphasis on high-mass clusters. Clusters form deeply embedded within dense clouds of molecular gas. Left-over gas is cleared within a few million years and, depending on the efficiency of star formation, the clusters may disperse almost immediately or remain gravitationally bound. Current evidence suggests that a few percent of star formation occurs in clusters that remain bound, although it is not yet clear if this fraction is truly universal. Internal two-body relaxation and external shocks will lead to further, gradual dissolution on timescales of up to a few hundred million years for low-mass open clusters in the Milky Way, while the most massive clusters (> 10^5 Msun) have lifetimes comparable to or exceeding the age of the Universe. The low-mass end of the initial cluster mass function is well approximated by a power-law distribution, dN/dM ~ M^{-2}, but there is mounting evidence that quiescent spiral discs form relatively few clusters with masses M > 2 x 10^5 Msun. In starburst galaxies and old globular cluster systems, this limit appears to be higher, at least several x 10^6 Msun. The difference is likely related to the higher gas densities and pressures in starburst galaxies, which allow denser, more massive giant molecular clouds to form. Low-mass clusters may thus trace star formation quite universally, while the more long-lived, massive clusters appear to form preferentially in the context of violent star formation.Comment: 21 pages, 3 figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 9 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. PDFLaTeX, requires rspublic.cls style fil

    A DVD-MoS2/Ag2S/Ag nanocomposite thiol-conjugated with porphyrins for an enhanced light-mediated hydrogen evolution reaction

    Get PDF
    We have recently demonstrated in a previous work an appreciable photoelectrocatalytic (PEC) behavior towards hydrogen evolution reaction (HER) of a MoS2/Ag2S/Ag nanocomposite electrochemically deposited on a commercial writable Digital Versatile Disc (DVD), consisting therefore on an interesting strategy to convert a common waster product in an added-value material. Herein, we present the conjugation of this MoS2/Ag2S/Ag-DVD nanocomposite with thiol-terminated tetraphenylporphyrins, taking advantage of the grafting of thiol groups through covalent S-S bridges, for integrating the well-known porphyrins photoactivity into the nanocomposite. Moreover, we employ two thiol-terminated porphyrins with different hydrophilicity, demonstrating that they either suppress or improve the PEC-HER performance of the overall hybrid, as a function of the molecule polarity, sustaining the concept of a local proton relay. Actually, the active polar porphyrin—MoS2/Ag2S/Ag-DVD hybrid material presented, when illuminated, a better HER performance, compared to the pristine nanocomposite, since the porphyrin may inject photoelectrons in the conduction band of the semiconductors at the formed heterojunction, presenting also a stable operational behavior during overnight chopped light chronoamperometric measurement, thanks to the robust bond created

    From Conflict to Balance: Challenges for Dual-Earner Families Managing Technostress and Work Exhaustion in the Post-Pandemic Scenario

    Get PDF
    Within the last three years, the COVID-19 pandemic outbreak has contributed to changing many aspects of individual and collective life. Focusing on professional life, the forced shift to remote working modalities, the consequent blurring of work-family (WF) boundaries, and the difficulties for parents in childrearing have significantly impacted family routines. These challenges have been more evident for some specific vulnerable categories of workers, such as dual-earner parents. Accordingly, the WF literature investigated the antecedents and outcomes of WF dynamics, highlighting positive and negative aspects of digital opportunities that may affect WF variables and their consequences on workers' well-being. In view of the above, the present study aims to investigate the key role of WF conflict and WF balance in mediating the relationship between technostress and work exhaustion. Structural Equation Modeling (SEM) was used to examine direct and indirect relationships among technostress, WF conflict, WF balance, and work exhaustion. Respondents were 376 Italian workers, specifically dual-earner parents who have at least one child. Results and implications are discussed with specific reference to the organizational policies and interventions that could be developed to manage technostress and WF conflict, fostering individual and social adjustment to the new normal

    Uncertainties in stellar evolution models: convective overshoot

    Full text link
    In spite of the great effort made in the last decades to improve our understanding of stellar evolution, significant uncertainties remain due to our poor knowledge of some complex physical processes that require an empirical calibration, such as the efficiency of the interior mixing related to convective overshoot. Here we review the impact of convective overshoot on the evolution of stars during the main Hydrogen and Helium burning phases.Comment: Proc. of the workshop "Asteroseismology of stellar populations in the Milky Way" (Sesto, 22-26 July 2013), Astrophysics and Space Science Proceedings, (eds. A. Miglio, L. Girardi, P. Eggenberger, J. Montalban

    A Young Globular Cluster in the Galaxy NGC 6946

    Get PDF
    A globular cluster ~15 My old that contains 5x10^5 Msun of stars inside an 11 pc radius has been found in the nearby spiral galaxy NGC 6946, surrounded by clouds of dust and smaller young clusters inside a giant circular bubble 300 pc in radius. At the edge of the bubble is an arc of regularly-spaced clusters that could have been triggered during the bubble's formation. The region is at the end of a spiral arm, suggesting an origin by the asymmetric collapse of spiral arm gas. The globular is one of the nearest examples of a cluster that is similar to the massive old globulars in the Milky Way. We consider the energetics of the bubble and possible formation mechanisms for the globular cluster, including the coalescence of smaller clusters.Comment: 20 pages, 7 figures, accepted for Astrophysical Journal Vol 535, June 1 200

    Optical Luminosities and Mass-to-Light Ratios of Nearby Galaxy Clusters

    Get PDF
    We analyze a sample of 105 clusters having virial mass homogeneously estimated and for which galaxy magnitudes are available with a well defined high degree of completeness. In particular, we consider a subsample of 89 clusters with B_j band galaxy magnitudes taken from the COSMOS/UKST Southern Sky Object Catalogue. We compute cluster luminosities L_{B_j} within several clustercentric distances and within the virialization radius R_{vir}. In particular, we use the luminosity function and background counts estimated by Lumsden et al. (1997) on the Edinburgh/Durham Southern Galaxy Catalogue. We analyze the effect of several uncertainties connected to photometric data, fore/background removal, and extrapolation below the completeness limit of the photometry, in order to assess the robustness of our cluster luminosity estimates. We draw our results on the relations between luminosity and dynamical quantities from the COSMOS sample by considering mass and luminosities determined within the virialization radius. We find a very good correlation between cluster luminosity, L_{B_j}, and galaxy velocity dispersion, sigma_v, with L_{B_j} proportional to sigma_v^{2.1--2.3}. Our estimate of typical value for the mass-to-light ratio is M/L_{B_j} about 250 (in solar units). We do not find any correlation of M/L_{B_j} with cluster morphologies, i.e. Rood--Sastry and Bautz--Morgan types, and only a weak significant correlation with cluster richness. We find that mass has a slight, but significant, tendency to increase faster than the luminosity does, M proportional to L_{B_j}^{1.2--1.3}. We verify the robustness of this relation against a number of possible systematics
    • …
    corecore