4 research outputs found

    Ensemble reweighting using Cryo-EM particles

    Full text link
    Cryo-electron microscopy (cryo-EM) has recently become a premier method for obtaining high-resolution structures of biological macromolecules. However, it is limited to biomolecular samples with low conformational heterogeneity, where all the conformations can be well-sampled at many projection angles. While cryo-EM technically provides single-molecule data for heterogeneous molecules, most existing reconstruction tools cannot extract the full distribution of possible molecular configurations. To overcome these limitations, we build on a prior Bayesian approach and develop an ensemble refinement framework that estimates the ensemble density from a set of cryo-EM particles by reweighting a prior ensemble of conformations, e.g., from molecular dynamics simulations or structure prediction tools. Our work is a general approach to recovering the equilibrium probability density of the biomolecule directly in conformational space from single-molecule data. To validate the framework, we study the extraction of state populations and free energies for a simple toy model and from synthetic cryo-EM images of a simulated protein that explores multiple folded and unfolded conformations

    A Bayesian approach to extracting free-energy profiles from cryo-electron microscopy experiments

    No full text
    Abstract Cryo-electron microscopy (cryo-EM) extracts single-particle density projections of individual biomolecules. Although cryo-EM is widely used for 3D reconstruction, due to its single-particle nature it has the potential to provide information about a biomolecule’s conformational variability and underlying free-energy landscape. However, treating cryo-EM as a single-molecule technique is challenging because of the low signal-to-noise ratio (SNR) in individual particles. In this work, we propose the cryo-BIFE method (cryo-EM Bayesian Inference of Free-Energy profiles), which uses a path collective variable to extract free-energy profiles and their uncertainties from cryo-EM images. We test the framework on several synthetic systems where the imaging parameters and conditions were controlled. We found that for realistic cryo-EM environments and relevant biomolecular systems, it is possible to recover the underlying free energy, with the pose accuracy and SNR as crucial determinants. We then use the method to study the conformational transitions of a calcium-activated channel with real cryo-EM particles. Interestingly, we recover not only the most probable conformation (used to generate a high-resolution reconstruction of the calcium-bound state) but also a metastable state that corresponds to the calcium-unbound conformation. As expected for turnover transitions within the same sample, the activation barriers are on the order of kBTk_BT k B T . We expect our tool for extracting free-energy profiles from cryo-EM images to enable more complete characterization of the thermodynamic ensemble of biomolecules
    corecore