5 research outputs found

    SEAwise report on the effects of fishing on food webs and community diversity aimed at populating the MSFD Descriptor 4 and based on food web and end-to-end modelling.

    No full text
    The SEAwise project works to deliver a fully operational tool that will allow fishers, managers, and policy makers to easily apply Ecosystem Based Fisheries Management (EBFM) in their fisheries. This SEAwise report describes work that aims to provide a strong evidence base supporting the use of ecological indicators in fisheries management through statistical studies and end to end modelling. Our aim is to support the use of ecological indicators to guide managers towards strategies that lead to an ecologically safe space for fisheries, which we define as a range of states that provide yields for sustainable fisheries, maintains ecosystem functions and leads to low risk of overexploitation of species and loss of diversity. We show from an analysis of the past, using stock assessment model products for the northeast Atlantic and observations from scientific survey data of the North Sea, that fishing has already impacted ecosystems. Fishing on commercial fish stocks altered the balance of functional groups within the ecosystem of the northeast Atlantic, with depletions in the biomass of fish during the 1980s followed by stock rebuilding since the early 2000s, such that the biomasses of benthivorous fish and planktivorous fish are now much greater than that of piscivorous fish, which may be a sign of an improving ecosystem. Within the North Sea, fishing also appeared to have depleted the biomass of fish during the 1980s (particularly in the southern North Sea) and led to a change in the composition of species and the proportion of large individuals in the ecosystem (particularly in the northern North Sea).We use comparative ecosystem modelling, employing multiple model types, to investigate the response of foodweb and community diversity indicators under a range of fishing strategies. We consider ‘no fishing’ scenarios, under prevailing environmental conditions, as a measure of the unimpacted state of the ecosystem i.e., its carrying capacity. Our modelled unimpacted state is our ‘yardstick’ - a standard from which we can measure the impact on the ecosystem due to current levels of fishing in the current conditions. We propose that the depletion of species, the difference in biomass of each species from their unimpacted levels under prevailing environmental conditions, can provide a basis from which to evaluate the risk of loss across impacted groups within the ecosystem.We investigate if any of our selected food web and community indicators, including those used within the regional sea convention OSPAR, can support the use of assessment thresholds that may help managers reduce the risk of depletion of species or degradation of ecosystems by fishing. We explore management scenarios, linked to changes in levels of fishing impact due to current fisheries (so not favouring one type of fishing over another), to demonstrate how reducing or increasing activity levels will alter the risk of depletion of species and demonstrate how ecological indicators are expected to change given alterations in the structure of the ecosystem. We contrast these management scenarios to additional scenarios in which seabed-impacting gears only are restricted to avoid damage to habitats. This latter scenario promotes fishing on pelagic fish, such as herring and sprat, in the future and inhibits trawling for demersal fish such as sole, plaice and cod.In each model, we find clear predictable relationships between fishing mortality overall (averaged across all model groups) and the depletion risk within the ecosystem. The biomass of apex predators typically decreases as fishing mortality increases. Similarly, as the size-structure of demersal fish communities decreases, risk within the communities increase. In contrast, the balance of trophic guilds in the ecosystem and the Shannon diversity overall or by group respond in differing ways (increases and decreases with increased fishing) dependent on the type fishing strategies modelled. The indicator targets for recovery and risk-based limits proposed here will be explored further in WP6 of the project.Read more about the project at www.seawiseproject.org</p

    SEAwise report on the bycatch mortality risk of potentially endangered and threatened species of fish, seabirds, reptiles and mammals

    No full text
    The SEAwise project works to deliver a fully operational tool that will allow fishers, managers, and policy makers to easily apply Ecosystem Based Fisheries Management (EBFM) in their fisheries and bycatch of protected, endangered and threatened (PET) species is a major concern in EBFM implementation. This SEAwise report evaluates the effects of fishing on bycatch of PET species by applying a hierarchical framework that moves from qualitative to quantitative methodologies depending on species vulnerability to bycatch and data availability. By these means, this work identifies current areas of highest bycatch risk across the case studies and assesses the sustainability of bycatch levels on PET populations.The first step of this report consisted of the application of the semi-quantitative Productivity-Susceptibility Analysis (PSA) to a wide range of sensitive species across European waters, including cetaceans, bony and cartilaginous fishes and a single seabird species. PSA measures the risk of a species to over-exploitation by a fishery based on two properties; productivity, defined by the life history characteristics determining the intrinsic rate of population increase, and susceptibility, based on the interactions between population and fishing dynamics. This analysis scores species’ productivity and susceptibility attributes from 1 (low risk) to 3 (high risk) for each fishery or gear of interest, allowing a rapid screening of the species most likely affected by bycatch.Cetaceans were assessed in the Bay of Biscay and Irish waters, and in both cases, gillnets were identified as the gears with the highest bycatch risk, especially for common dolphin (Delphinus delphis) and harbour porpoise (Phocoena phocoena). Cartilaginous fishes were assessed in the Mediterranean Sea, including pelagic species such as the blue shark (Prionace glauca) and demersal species such as the longnose spurgod (Squalus blainville), the bull ray (Aetomylaeus bovinus) and the common smooth-hound (Mustelus mustelus). The blue shark, which is Critically Endangered in the Mediterranean, showed a high risk of being bycaught by pelagic longline, while demersal species were all highly threatened by bottom trawlers. A combination of elasmobranchs and teleost fishes was assessed along the North Sea, Bay of Biscay, and Celtic Seas, including common skate complex (Dipturus spp.), blonde ray (Raja brachyura), spurdog (Squalus acanthias), tope (Galeorhinus galeus), spotted ray (Raja montagui), undulate ray (Raja undulata), starry ray (Amblyraja radiata), John dory (Zeus faber), Atlantic wolffish (Anarhichas lupus) and Atlantic halibut (Hippoglossus hippoglossus). Highest bycatch risk was found for the common skate complex, spurdog and tope, showing highest bycatch risk for both beam- and otter trawls, as well as gillnets. The only seabird species analysed was the critically endangered Balearic shearwater (Puffinus mauretanicus), which showed a high risk to longlines in the Bay of Biscay.Where quantitative data were available for populations size and bycatch in e.g, ICES reports, the impact of fisheries bycatch was estimated quantitively by estimating reference points and by comparing them to total bycatch mortalities. This quantitative assessment was completed for two cetaceans and two elasmobranch species that were also included in the previous step. Bycatch impact for the common dolphin in the Northeast Atlantic and for harbour porpoise in Irish waters was found to be unsustainable, as current bycatch mortalities are above the “allowable” capture limits in both cases. For spurdog and undulate ray in the Northeast Atlantic and English Channel, respectively, the fishing pressure on the stock was sustainable, as it is below the harvest rate of Maximum Sustainable Yield (MSY). Reference points for seabirds were also estimated, but no comparison with bycatch mortality could be done due to lack of data. Additionally, quantitative assessments were produced for grey seal in the North Sea and loggerhead turtle in the Mediterranean (despite not being included in the previous step), where current bycatch rates were evaluated to be sustainable.Specific analyses were conducted for the Baltic Sea harbour porpoise with previously unused bycatch data from gillnets. Bycatch was modelled to estimate total bycatch mortality, addressing several objectives at once. On one hand, estimated total bycatch was compared with reference points, which showed that the current bycatch level was unsustainable for the population. Secondly, estimated total bycatch was compared with the results provided by previous simpler extrapolations, demonstrating that the later should not be applied when the fishery is heterogeneous due to the potential to provide biased estimates.Overall, the qualitative approaches are commonly used as a tool to identify species that are minimally affected, so the more intensive analysed are limited to high-risk species. Here, most species analysed showed-medium-high risk and therefore, all of them should have been analysed in further steps. However, many of those species lack the necessary information to conduct a quantitative assessment, and as result, the impact of bycatch at population level could only be evaluated, as seen above, for a few of them. This highlights the need for more exhaustive data collection and further research that could answer to the requirements of the EBFM.More information about the SEAwise project can be found at https://seawiseproject.org/</p

    SEAwise Report on the key social and economic aspects of regional fisheries

    No full text
    Fishing is a human activity with various social and economic implications. In most countries, those implications are key factors to consider when deciding on specific management strategies. In this report, the fisheries management strategies implemented in the different European marine regions are reviewed, and relevant indicators, models and tools that can be used to predict the effectiveness of these strategies, from a social and economic point of view are identified. The objective was to identify the critical social and economic aspects of fisheries,  relevant social and economic indicators, and regionally‐relevant management measures to be considered in the evaluations of different management strategies later in the project.   The scoping consultations and systematic reviews identified a long list of potentially relevant key social and economic aspects and management measures. Among these, the most frequently mentioned items identified in scoping with stakeholders were windfarms, employment/jobs, MPAs, food supply, small-scale fisheries, local communities and pollution. The systematic review identified landings (volume or value), effort (days at sea), fuel costs, number of vessels, profit, aspects of costs, economic performance, sustainability-resilience, compliance and capacity as frequently occurring topics. The fisheries management policies most frequently mentioned were effort control, landing obligation, Individual Transferable Quota (ITQ), MPAs and TAC. Among the papers analyzed, more than 30%, concerned the Mediterranean region, followed by Western Waters, the North Sea and the Baltic Sea, indicating a higher contribution of Mediterranean studies to the conclusions. Aspects identified frequently in both scoping and in systematic reviews included MPAs and small-scale fisheries, which were all identified in both methods as frequently occurring. However, there were also aspects which appeared to be represented differently in the evaluations (e.g. employment and local communities) indicating discrepancies between the available knowledge and that sought by the end users. The report describes results from the SEAwise project. More information can be found at https://seawiseproject.org/</p

    SEAwise Report on the key species and habitats impacted by fishing

    No full text
    The implementation of ecosystem-based fisheries management requires knowledge on the ecological impact of fishing activities on species and their habitats – those both targeted and not targeted by fisheries. To identify which ecological impacts are key and what is known about them, SEAwise consulted stakeholders through European Advisory Councils and conducted a systematic review of the scientific literature to map the available knowledge and evidence. Specific reference was given to the bycatch of Protected, Endangered and Threatened (PET) species, benthic habitats, food webs and biodiversity, and impact from fisheries-related litter and ghost nets.  At the stakeholder consultations, sharks and/or elasmobranchs, turtles, species interactions, and seals or marine mammals were identified as top ranked in at least three out of the five regions. Other terms identified by at least two Case Study regions were: seabirds, sensitive species, benthic habitats, litter, PET species, invasive species and species interactions.  Relevant data were extracted from 549 retained papers. The majority of studies were conducted in the Mediterranean Sea, whereas only few papers reported on fishing impacts in the Baltic Sea (see figure below). Bony fish (teleosts) and benthos were the most studied ecosystem components in all Case Study regions, whereas marine mammals and cartilaginous fish were often studied in relation to bycatch of PET species.  Out of the 549 papers, most of them were related to fishing impacts on food webs and biodiversity and benthic habitats, followed by bycatch of PET species and other fishing impact studies (not related to any task). Fewest studies were related to the impact of fisheries-related litter and ghost nets. Demersal trawls were by far the most studied gear in studies on commercial fishing impacts. For recreational fisheries, hooks and lines, in particular angling, was the most studied fishing activity.  Among the items identified by the stakeholders, marine mammals, seabirds and reptiles were all covered in at least 25 papers each, indicating that there is a considerable body of knowledge even though not all areas may have information for all species. Litter was the key item that was least frequently reported on in the literature, especially outside the Mediterranean, where scientific papers were rare. As a consequence, areas outside the Mediterranean may lack information for further analysis unless a dedicated effort is made in SEAwise to remedy this. The regional differences in topics identified by stakeholder scoping did not reflect the regional amount of papers available.  This report describes results of the SEAwise project. More information about the project can be found at https://seawiseproject.org/</p

    SEAwise Report on consistency of existing targets and limits for indicators in an ecosystem context

    No full text
    The SEAwise project works to deliver a fully operational tool that will allow fishers, managers, and policy makers to easily apply Ecosystem Based Fisheries Management (EBFM) in their fisheries. This SEAwise report investigates the consistency of existing targets and limits from the Common Fisheries Policy (CFP) and the Marine Strategy Framework Directive (MSFD). Trade-offs between different objectives (ecological, economic, social), targets and limits are highlighted. A wide range of model types (from bio-economic to full ecosystem models) has been applied to various case study areas across the North East Atlantic and Mediterranean. Although model predictions are by nature uncertain, this study provides important information on likely inconsistencies between existing targets and limits and trade-offs expected under ecosystem- based fisheries management (EBFM). The scenarios investigated include the current range of management applied in terms of the Maximum Sustainable Yield (MSY) concept (i.e. strict MSY approach vs. Pretty Good Yield (PGY) approach allowing sustainable deviations from single species FMSY point estimates). The landing obligation is a key aspect of current fisheries management and was fully considered, in particular for mixed demersal fisheries.Maintaining current fishing effort without further management measures was the least sustainable option in nearly all cases studies. This approach led to increased risk of stocks falling below critical biomass limits. Although the fishing effort adaptions needed is highly case specific, this indicates that further management measures are likely to be needed to ensure a sustainable exploitation of all stocks.Scenarios applying a strict MSY approach in combination with the landing obligation (i.e. FMSY as upper limit with fisheries ending when the first stock reaches FMSY) in most case studies led to the lowest fishing effort. This had positive effects on MSFD related indicators such as bycatch of Protected, Endangered and Threatened (PET) species, benthic impact and the Large Fish Indicator as well as global indicators such as CO2 emission or ecosystem-based indicators like catch per km2. However, this scenario often led to the lowest catches from mixed demersal fisheries due to strong choke effects because fleets had to stop when their first quota was exhausted. This reduces social indicators such as food security, employment and wages. In terms of economic performance, the gains and loses were highly case specific. Scenarios applying the Pretty Good Yield concept and allowing sustainable deviations from the FMSY point estimate when stocks are in a healthy state often outperformed the scenarios applying FMSY as strict upper limit. Such scenarios, applying a more flexible interpretation of the MSY concept, led to reduced fishing effort compared to the status quo effort, but relaxed choke situations in mixed demersal fisheries to some extent leading to higher gross profits and in some case studies also to higher catches. Hence, they may constitute a compromise between the need to attain social as well as ecological objectives. Whether the associated effort levels lead to conflicts with MSFD objectives must be analysed when more internationally agreed thresholds become available for e.g., bycatch of PET species or benthic impact.The majority of case studies exceeded suggested thresholds for the global ecosystem indicators catch per km2 or primary production even under scenarios with high effort reductions. This can be explained to some extent by the fact that these indices are mainly driven by pelagic and industrial fisheries not always part of the models applied. Nevertheless, it indicates potential conflicts with such more holistic ecosystem indicators in their current form.Additional trade-offs in terms of yield were identified within the food web if e.g., demersal piscivorous predators feed on small pelagic fish and both groups are fished. Further, in case studies where small-scale fisheries (SSF) play an important role (e.g., Eastern Ionian Sea) additional trade-offs became apparent as different scenarios led to different ratios between revenues from small scale fisheries and revenues from large-scale fisheries. This adds another level of complexity when such aspects need to be taken more into account in future fisheries management under EBFM.The modelling assumed current selectivities and catchabilities will be maintained in the future. Especially trade-offs arising from fleets having to stop fishing when their first quota is exhausted or when e.g., a threshold for bycatch of PET species is reached may be resolved by improving selectivities via technical measures (e.g., closed areas or innovative gears) in the future. Deliverable 6.8 in month 36 will test such scenarios. Furthermore, the list of indicators and their targets and limits will be updated based on research within and outside SEAwise. Predictive capability of models will be enhanced by incorporating improved biological and economic sub-models in relation to environmental change. Climate change scenarios will be run and new harvest control rules (HCRs), proposed by SEAwise, will be tested. Finally, consistent targets and limits will be proposed for implementing EBFM.</p
    corecore