9 research outputs found

    Asymptotic Abelianness and Braided Tensor C*-Categories

    Full text link
    By introducing the concepts of asymptopia and bi-asymptopia, we show how braided tensor C*-categories arise in a natural way. This generalizes constructions in algebraic quantum field theory by replacing local commutativity by suitable forms of asymptotic Abelianness.Comment: 20 pages, no figures. Final version, as to appear in "Rigorous Quantum Field Theory", Progress in Mathematics, Volume 25

    The extension problem for partial Boolean structures in Quantum Mechanics

    Full text link
    Alternative partial Boolean structures, implicit in the discussion of classical representability of sets of quantum mechanical predictions, are characterized, with definite general conclusions on the equivalence of the approaches going back to Bell and Kochen-Specker. An algebraic approach is presented, allowing for a discussion of partial classical extension, amounting to reduction of the number of contexts, classical representability arising as a special case. As a result, known techniques are generalized and some of the associated computational difficulties overcome. The implications on the discussion of Boole-Bell inequalities are indicated.Comment: A number of misprints have been corrected and some terminology changed in order to avoid possible ambiguitie

    Quantum mechanics on manifolds and topological effects

    Full text link
    A unique classification of the topological effects associated to quantum mechanics on manifolds is obtained on the basis of the invariance under diffeomorphisms and the realization of the Lie-Rinehart relations between the generators of the diffeomorphism group and the algebra of infinitely differentiable functions on the manifold. This leads to a unique ("Lie-Rinehart") C* algebra as observable algebra; its regular representations are shown to be locally Schroedinger and in one to one correspondence with the unitary representations of the fundamental group of the manifold. Therefore, in the absence of spin degrees of freedom and external fields, the first homotopy group of the manifold appears as the only source of topological effects.Comment: A few comments have been added to the Introduction, together with related references; a few words have been changed in the Abstract and a Note added to the Titl

    Bell inequalities as constraints on unmeasurable correlations

    Full text link
    The interpretation of the violation of Bell-Clauser-Horne inequalities is revisited, in relation with the notion of extension of QM predictions to unmeasurable correlations. Such extensions are compatible with QM predictions in many cases, in particular for observables with compatibility relations described by tree graphs. This implies classical representability of any set of correlations , , , and the equivalence of the Bell-Clauser-Horne inequalities to a non void intersection between the ranges of values for the unmeasurable correlation associated to different choices for B. The same analysis applies to the Hardy model and to the "perfect correlations" discussed by Greenberger, Horne, Shimony and Zeilinger. In all the cases, the dependence of an unmeasurable correlation on a set of variables allowing for a classical representation is the only basis for arguments about violations of locality and causality.Comment: Some modifications have been done in order to improve clarity of presentation and comparison with other approache

    Quantum delocalization of the electric charge

    Get PDF
    The classical Maxwell-Dirac and Maxwell-Klein-Gordon theories admit solutions of the field equations where the corresponding electric current vanishes in the causal complement of some bounded region of Minkowski space. This poses the interesting question of whether states with a similarly well localized charge density also exist in quantum electrodynamics. For a large family of charged states, the dominant quantum corrections at spacelike infinity to the expectation values of local observables are computed. It turns out that certain moments of the charge density decrease no faster than the Coulomb field in spacelike directions. In contrast to the classical theory, it is therefore impossible to define the electric charge support of these states in a meaningful way.Comment: 17 page
    corecore