55 research outputs found

    Psychophysical evidence for the number sense

    Get PDF

    Spontaneous perception of numerosity in humans

    Get PDF
    Humans, including infants, and many other species have a capacity for rapid, nonverbal estimation of numerosity. However, the mechanisms for number perception are still not clear; some maintain that the system calculates numerosity via density estimates—similar to those involved in texture—while others maintain that more direct, dedicated mechanisms are involved. Here we show that provided that items are not packed too densely, human subjects are far more sensitive to numerosity than to either density or area. In a two-dimensional space spanning density, area and numerosity, subjects spontaneously react with far greater sensitivity to changes in numerosity, than either area or density. Even in tasks where they were explicitly instructed to make density or area judgments, they responded spontaneously to number. We conclude, that humans extract number information, directly and spontaneously, via dedicated mechanisms

    Mechanisms for perception of numerosity or texture-density are governed by crowding-like effects

    Get PDF
    We have recently provided evidence that the perception of number and texture density is mediated by two independent mechanisms: numerosity mechanisms at relatively low numbers, obeying Weber's law, and texture-density mechanisms at higher numerosities, following a square root law. In this study we investigated whether the switch between the two mechanisms depends on the capacity to segregate individual dots, and therefore follows similar laws to those governing visual crowding. We measured numerosity discrimination for a wide range of numerosities at three eccentricities. We found that the point where the numerosity regime (Weber's law) gave way to the density regime (square root law) depended on eccentricity. In central vision, the regime changed at 2.3 dots/°2, while at 15° eccentricity, it changed at 0.5 dots/°2, three times less dense. As a consequence, thresholds for low numerosities increased with eccentricity, while at higher numerosities thresholds remained constant. We further showed that like crowding, the regime change was independent of dot size, depending on distance between dot centers, not distance between dot edges or ink coverage. Performance was not affected by stimulus contrast or blur, indicating that the transition does not depend on low-level stimulus properties. Our results reinforce the notion that numerosity and texture are mediated by two distinct processes, depending on whether the individual elements are perceptually segregable. Which mechanism is engaged follows laws that determine crowding

    The effects of cross-sensory attentional demand on subitizing and on mapping number onto space

    Get PDF
    Various aspects of numerosity judgments, especially subitizing and the mapping of number onto space, depend strongly on attentional resources. Here we use a dual-task paradigm to investigate the effects of cross-sensory attentional demands on visual subitizing and spatial mapping. The results show that subitizing is strongly dependent on attentional resources, far more so than is estimation of higher numerosities. But unlike many other sensory tasks, visual subitizing is equally affected by concurrent attentionally demanding auditory and tactile tasks as it is by visual tasks, suggesting that subitizing may be amodal. Mapping number onto space was also strongly affected by attention, but only when the dual-task was in the visual modality. The non-linearities in numberline mapping under attentional load are well explained by a Bayesian model of central tendency. © 2012 Elsevier Ltd

    Distortions of visual time induced by motor adaptation

    Get PDF

    Independent adaptation mechanisms for numerosity and size perception provide evidence against a common sense of magnitude

    Get PDF
    Abstract How numerical quantity is processed is a central issue for cognition. On the one hand the “number sense theory” claims that numerosity is perceived directly, and may represent an early precursor for acquisition of mathematical skills. On the other, the “theory of magnitude” notes that numerosity correlates with many continuous properties such as size and density, and may therefore not exist as an independent feature, but be part of a more general system of magnitude. In this study we examined interactions in sensitivity between numerosity and size perception. In a group of children, we measured psychophysically two sensory parameters: perceptual adaptation and discrimination thresholds for both size and numerosity. Neither discrimination thresholds nor adaptation strength for numerosity and size correlated across participants. This clear lack of correlation (confirmed by Bayesian analyses) suggests that numerosity and size interference effects are unlikely to reflect a shared sensory representation. We suggest these small interference effects may rather result from top-down phenomena occurring at late decisional levels rather than a primary “sense of magnitude”

    Similar effect of running on visual and auditory time perception in the ranges of milliseconds and seconds

    Get PDF
    IntroductionThe ability to accurately encode events’ duration is of critical importance for almost all everyday activities, yet numerous factors have been reported to robustly distort time perception. One of these is physical activity (i.e., running, walking) but, partly due to the variety of methodologies employed, a full comprehension of the role of exercise on the encoding of time has still to be achieved.MethodsHere we tackle the issue with a multifaceted approach by measuring the effect of vigorous running with a time generalization task for visual and auditory stimuli in the range of milliseconds (0.2–0.8 s) as well as seconds (1–4 s). At baseline, participants performed both the encoding and decoding at rest while in the experimental conditions the decoding was performed while running.ResultsOur results indicate that physical activity in both duration ranges (sub-second and seconds) was expanded during running regardless of the sensory modality used to present the stimuli. Despite this generalized effect of running on perceived duration, we found evidence for the existence of independent timing mechanisms: (1) the perceptual biases induced by running in the two temporal regimes were uncorrelated, (2) sensory precision levels (Weber fraction) were higher for stimuli in the seconds range, (3) sensory precision levels were higher for auditory than for visual stimuli, but only within the sub-second range.DiscussionOverall, our results support previous findings suggesting (at least partially) separate timing mechanisms for short/long durations and for visual and auditory stimuli. However, they also indicate that physical activity affects all these temporal modules, suggesting a generalized interaction—via generalized and shared resources—between the motor system and the brain time mechanisms

    Connecting visual objects reduces perceived numerosity and density for sparse but not dense patterns

    Get PDF
    How is numerosity encoded by the visual system? – directly, or derived indirectly from texture density? We recently suggested that the numerosity of sparse patterns is encoded directly by dedicated mechanisms (which have been described as the "Approximate Number System" ANS). However, at high dot densities, where items become "crowded" and difficult to segregate, "texture-density" mechanisms come into play. Here we tested the importance of item segmentation on numerosity and density perception at various stimulus densities, by measuring the effect of connecting visual objects with thin lines. The results confirmed many previous studies showing that connecting items robustly reduces the apparent numerosity of patterns of moderate density. We further showed that the apparent density of moderate-density patterns is also reduced by connecting the dots. Crucially, we found that both these effects are strongly reduced at higher numerosities. Indeed for density judgments, the effect reverses, so connecting dots in dense patterns increases the apparent density (as expected from the physical characteristics). The results provide clear support for the three-regime framework of number perception, and suggest that for moderately sparse stimuli, numerosity – but not texture-density – is perceived directly

    The role of non-numerical information in the perception of temporal numerosity

    Get PDF
    Numerosity perception refers to the ability to make rapid but approximate estimates of the quantity of elements in a set (spatial numerosity) or presented sequentially (temporal numerosity). Whether numerosity is directly perceived or indirectly recomputed from non-numerical features is a highly debated issue. In the spatial domain, area and density have been suggested as the main parameters through which numerosity would be recomputed. In the temporal domain, stimuli duration and temporal frequency could be similarly exploited to retrieve numerosity. By adapting a psychophysical technique previously exploited in the spatial domain, we investigated whether temporal visual numerosity is directly perceived. Adult participants observed sequences of visual impulses sampled from a stimulus space spanning several levels of temporal frequency and duration (and hence numerosity), and then reproduced the sequence as accurately as possible via a series of keypresses. Crucially, participants were not asked to reproduce any particular property (such as number of impulses) but were free to choose any available cue (such as total duration, or temporal frequency). The results indicate that while the overall sequence duration was barely considered, numerosity and temporal frequency were both spontaneously used as the main cues to reproduce the sequences, with a slight but significant dominance of numerosity. Overall, the results are in line with previous literature suggesting that numerosity is directly encoded, even for temporal sequences, but a non-numerical feature (temporal frequency) is also used in reproducing sequences
    • …
    corecore