2 research outputs found

    Effect of different restorative procedures on the fracture resistance of teeth submitted to internal bleaching

    Get PDF
    The aim of this study was to evaluate the influence of different restorative procedures on the fracture resistance of endodontically treated teeth submitted to intracoronal bleaching. Fifty upper central incisors were distributed into 5 groups: GI - healthy teeth; GII - endodontically treated teeth sealed with Coltosol; GIII - endodontically treated teeth bleached and sealed with Coltosol; GIV - endodontically treated teeth bleached and restored with composite resin; and GV - endodontically treated teeth bleached and restored with a fiberglass post and composite resin. In the bleached specimens, a cervical seal was made prior to bleaching with 38% hydrogen peroxide. The gel was applied on the buccal surface and in the pulp chamber, and was then light-activated for 45 s. This procedure was repeated three times per session for four sessions, and each group was submitted to the restorative procedures described above. The specimens were submitted to fracture resistance testing in a universal testing machine. There were statistically significant differences among the groups (p < 0.05). The mean value found for GIII was the lowest (0.32 kN) and was significantly different from the values found for GI (0.75 kN), GII (0.67 kN), GIV (0.70 kN), and GV (0.72 kN), which were not significantly different from each other (p > 0.05). The restorative procedures using composite resin were found to successfully restore the fracture resistance of endodontically treated and bleached teeth

    IN VITRO FRACTURE RESISTANCE OF GLASS-FIBER AND CAST METAL POSTS WITH DIFFERENT LENGTHS

    No full text
    Statement of problem. Dental fractures can occur in endodontically treated teeth restored with posts. Purpose. The purpose of this study was to evaluate the in vitro fracture resistance of roots with glass-fiber and metal posts of different lengths. Material and methods. Sixty endodontically treated maxillary canines were embedded in acrylic resin, except for 4 mm of the cervical area, after removing the clinical crowns. The post spaces were opened with a cylindrical bur at low speed attached to a surveyor, resulting in preparations with lengths of 6 mm (group 6 mm), 8 mm (group 8 mm), or 10 mm (group 10 mm). Each group was divided into 2 subgroups according to the post material: cast post and core or glass-fiber post (n=30). The posts were luted with dual-polymerizing resin cement (Panavia F). Cast posts and cores of Co-Cr (Resilient Plus) crowns were made and cemented with zinc phosphate. Specimens were subjected to increasing compressive load (N) until fracture. Data were analyzed with 2-way ANOVA and the Tukey-Kramer test (alpha=.05). Results. The ANOVA analysis indicated significant differences (P<.05) among the groups, and the Tukey test revealed no significant difference among the metal posts of 6-mm length (26.5 N +/- 13.4), 8-mm length (25.2 N +/- 13.9), and 10-mm length (17.1 N +/- 5.2). Also, in the glass-fiber post group, there was no significant difference when posts of 8-mm length (13.4 N +/- 11.0) were compared with the 6-mm (6.9 N +/- 4.6) and 10-mm (31.7 N +/- 13.1) groups. The 10-mm-long post displayed superior fracture resistance, and the 6-mm-long post showed significantly lower mean values (P<.001). Conclusions. Within the limitations of this study, it was concluded that the glass-fiber post represents a viable alternative to the cast metal post, increasing the resistance to fracture of endodontically treated canines. (J Prosthet Dent 2009;101:183-188)Brazilian agency CAPES (Coordination for Improvement of Higher Education Personnel)[PROSUP 0012/02-5
    corecore