18 research outputs found

    Behavioral and Neurophysiological Effects of Transcranial Direct Current Stimulation (tDCS) in Fronto-Temporal Dementia

    Get PDF
    Fronto-temporal dementia (FTD) is the clinical-diagnostic term that is now preferred to describe patients with a range of progressive dementia syndromes associated with focal atrophy of the frontal and anterior temporal cerebral regions. Currently available FTD medications have been used to control behavioral symptoms, even though they are ineffective in some patients, expensive and may induce adverse effects. Alternative therapeutic approaches are worth pursuing, such as non-invasive brain stimulation with transcranial direct current (tDCS). tDCS has been demonstrated to influence neuronal excitability and reported to enhance cognitive performance in dementia. The aim of this study was to investigate whether applying Anodal tDCS (2 mA intensity, 20 min) over the fronto-temporal cortex bilaterally in five consecutive daily sessions would improve cognitive performance and behavior symptoms in FTD patients, also considering the neuromodulatory effect of stimulation on cortical electrical activity measured through EEG. We recruited 13 patients with FTD and we tested the effect of Anodal and Sham (i.e., placebo) tDCS in two separate experimental sessions. In each session, at baseline (T0), after 5 consecutive days (T1), after 1 week (T2), and after 4 weeks (T3) from the end of the treatment, cognitive and behavioral functions were tested. EEG (21 electrodes, 10–20 international system) was recorded for 5 min with eyes closed at the same time points in nine patients. The present findings showed that Anodal tDCS applied bilaterally over the fronto-temporal cortex significantly improves (1) neuropsychiatric symptoms (as measured by the neuropsychiatric inventory, NPI) in FTD patients immediately after tDCS treatment, and (2) simple visual reaction times (sVRTs) up to 1 month after tDCS treatment. These cognitive improvements significantly correlate with the time course of the slow EEG oscillations (delta and theta bands) measured at the same time points. Even though further studies on larger samples are needed, these findings support the effectiveness of Anodal tDCS over the fronto-temporal regions in FTD on attentional processes that might be correlated to a normalized EEG low-frequency pattern

    Testing the 2018 NIA-AA research framework in a retrospective large cohort of patients with cognitive impairment: From biological biomarkers to clinical syndromes

    Get PDF
    Background According to the 2018 NIA-AA research framework, Alzheimer's disease (AD) is not defined by the clinical consequences of the disease, but by its underlying pathology, measured by biomarkers. Evidence of both amyloid-beta (A beta) and phosphorylated tau protein (p-tau) deposition-assessed interchangeably with amyloid-positron emission tomography (PET) and/or cerebrospinal fluid (CSF) analysis-is needed to diagnose AD in a living person. Our aim was to test the new NIA-AA research framework in a large cohort of cognitively impaired patients to evaluate correspondence between the clinical syndromes and the underlying pathologic process testified by biomarkers. Methods We retrospectively analysed 628 subjects referred to our centre in suspicion of dementia, who underwent CSF analysis, together with neuropsychological assessment and neuroimaging, and were diagnosed with different neurodegenerative dementias according to current criteria, or as cognitively unimpaired. Subjects were classified considering CSF biomarkers, and the prevalence of normal, AD-continuum and non-AD profiles in each clinical syndrome was calculated. The positivity threshold of each CSF biomarker was first assessed by receiver operating characteristic analysis, using A beta-positive/negative status as determined by amyloid-PET visual reads. The agreement between CSF and amyloid-PET data was also evaluated. Results Among patients with a clinical diagnosis of AD, 94.1% were in the AD-continuum, whereas 5.5% were classified as non-AD and 0.4% were normal. The AD-continuum profile was found also in 26.2% of frontotemporal dementia, 48.6% of Lewy body dementia, 25% of atypical parkinsonism and 44.7% of vascular dementia. Biomarkers' profile did not differ in amnestic and not amnestic mild cognitive impairment. CSF A beta levels and amyloid-PET tracer binding negatively correlated, and the concordance between the two A beta biomarkers was 89%. Conclusions The examination of the 2018 NIA-AA research framework in our clinical setting revealed a good, but incomplete, correspondence between the clinical syndromes and the underlying pathologic process measured by CSF biomarkers. The AD-continuum profile resulted to be a sensitive, but non-specific biomarker with regard to the clinical AD diagnosis. CSF and PET A beta biomarkers were found to be not perfectly interchangeable to quantify the A beta burden, possibly because they measure different aspects of AD pathology

    Behavioral and neurophysiological effects of transcranial direct current stimulation (tDCS) in fronto-temporal dementia

    Get PDF
    Fronto-temporal dementia (FTD) is the clinical-diagnostic term that is now preferred to describe patients with a range of progressive dementia syndromes associated with focal atrophy of the frontal and anterior temporal cerebral regions. Currently available FTD medications have been used to control behavioral symptoms, even though they are ineffective in some patients, expensive and may induce adverse effects. Alternative therapeutic approaches are worth pursuing, such as non-invasive brain stimulation with transcranial direct current (tDCS). tDCS has been demonstrated to influence neuronal excitability and reported to enhance cognitive performance in dementia. The aim of this study was to investigate whether applying Anodal tDCS (2 mA intensity, 20 min) over the fronto-temporal cortex bilaterally in five consecutive daily sessions would improve cognitive performance and behavior symptoms in FTD patients, also considering the neuromodulatory effect of stimulation on cortical electrical activity measured through EEG. We recruited 13 patients with FTD and we tested the effect of Anodal and Sham (i.e., placebo) tDCS in two separate experimental sessions. In each session, at baseline (T0), after 5 consecutive days (T1), after 1 week (T2), and after 4 weeks (T3) from the end of the treatment, cognitive and behavioral functions were tested. EEG (21 electrodes, 10-20 international system) was recorded for 5 min with eyes closed at the same time points in nine patients. The present findings showed that Anodal tDCS applied bilaterally over the fronto-temporal cortex significantly improves (1) neuropsychiatric symptoms (as measured by the neuropsychiatric inventory, NPI) in FTD patients immediately after tDCS treatment, and (2) simple visual reaction times (sVRTs) up to 1 month after tDCS treatment. These cognitive improvements significantly correlate with the time course of the slow EEG oscillations (delta and theta bands) measured at the same time points. Even though further studies on larger samples are needed, these findings support the effectiveness of Anodal tDCS over the fronto-temporal regions in FTD on attentional processes that might be correlated to a normalized EEG low-frequency pattern

    Exploiting proximal F/T measurements for the iCub active compliance

    No full text
    Abstract — During the last decades, interaction (with humans and with the environment) has become an increasingly inter-esting topic of research within the field of robotics. At the basis of interaction, a fundamental role is played by the ability to actively regulate the interaction forces. In this paper we propose a technique for controlling the interaction forces exploiting a proximal six axes force/torque sensor. The major assumption is the knowledge of the point where external forces are applied. The proposed approach is tested and validated on the four limbs of the iCub, a humanoid robot designed for research in embodied cognition. Remarkably, the proposed approach can be used to implement active compliance in other non passively back-drivable manipulators by simply inserting one or more force/torque sensor anywhere along the kinematic chain. I

    Nature-Based Solutions for Storm Water Management—Creation of a Green Infrastructure Suitability Map as a Tool for Land-Use Planning at the Municipal Level in the Province of Monza-Brianza (Italy)

    No full text
    Growing and uncontrolled urbanization and climate change (with an associated increase in the frequency of intense meteoric events) have led to a rising number of flooding events in urban areas due to the insufficient capacity of conventional drainage systems. Nature-Based Solutions represent a contribution to addressing these problems through the creation of a multifunctional green infrastructure, both in urban areas and in the countryside. The aim of this work was to develop a methodology to define Green Infrastructure for stormwater management at the municipal level. The methodology is defined on the basis of three phases: the definition of the territorial information needed, the production of base maps, and the production of a Suitability Map. In the first phase, we define the information needed for the identification of non-urbanized areas where rainwater can potentially infiltrate, as well as areas with soil characteristics that can exclude or limit rainwater infiltration. In the second phase, we constructed the following base maps: a “map of green areas”, a “map of natural surface infiltration potential” and a “map of exclusion areas”. In phase 3, starting from the base maps created in phase 2 and using Geographical Information Systems’ (GIS) geoprocessing procedures, the “Green area compatibility map to realize Green Infrastructure”, the “map of areas not suitable for infiltration” and the final “Green Infrastructure Suitability Map” are created. This methodology should help municipal authorities to set up Green Infrastructure Suitability Maps as a tool for land-use planning
    corecore