11 research outputs found

    Deepening the understanding of CNVs on chromosome 15q11–13 by using hiPSCs: An overview

    Get PDF
    The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is widely expressed in the central and peripheral nervous systems. This receptor is implicated in both brain development and adult neurogenesis thanks to its ability to mediate acetylcholine stimulus (Ach). Copy number variations (CNVs) of CHRNA7 gene have been identified in humans and are genetically linked to cognitive impairments associated with multiple disorders, including schizophrenia, bipolar disorder, epilepsy, Alzheimer’s disease, and others. Currently, α7 receptor analysis has been commonly performed in animal models due to the impossibility of direct investigation of the living human brain. But the use of model systems has shown that there are very large differences between humans and mice when researchers must study the CNVs and, in particular, the CNV of chromosome 15q13.3 where the CHRNA7 gene is present. In fact, human beings present genomic alterations as well as the presence of genes of recent origin that are not present in other model systems as well as they show a very heterogeneous symptomatology that is associated with both their genetic background and the environment where they live. To date, the induced pluripotent stem cells, obtained from patients carrying CNV in CHRNA7 gene, are a good in vitro model for studying the association of the α7 receptor to human diseases. In this review, we will outline the current state of hiPSCs technology applications in neurological diseases caused by CNVs in CHRNA7 gene. Furthermore, we will discuss some weaknesses that emerge from the overall analysis of the published articles

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Generation of an induced pluripotent stem cell line CSSi015-A (9553), carrying a point mutation c.2915C > T in the human calcium sensing receptor (CasR) gene

    Get PDF
    : Familial Hypocalciuric Hypercalcemia (FHH1) is a rare autosomal dominant disease with low penetrance, caused by inactivating mutations of the calcium-sensing receptor (CaSR) gene, characterized by significant hypercalcemia, inappropriately normal serum PTH levels and a low urinary calcium level. Human induced pluripotent stem cells (hiPSCs) from a patient carrying a previously identified heterozygous mutation, a p.T972M amino acid substitution in cytoplasmic tail of CasR, were produced using a virus, xeno-free and non-integrative protocol

    Production of CSSi013-A (9360) iPSC line from an asymptomatic subject carrying an heterozygous mutation in TDP-43 protein

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is a fatal disease affecting both upper and lower motoneurons. The transactive response DNA binding protein (TARDBP) gene, encoding for TDP-43, is one of the most commonly mutated gene associated with familial cases of ALS (10%). We generated a human induced pluripotent stem cell (hiPSC) line from the fibroblasts of an asymptomatic subject carrying the TARDBP p.G376D mutation. This mutation is very rare and was described in a large Apulian family, in which all ALS affected members are carriers of the mutation. The subject here described is the first identified asymptomatic carrier of the mutation

    Characterization of the p.L145F and p.S135N Mutations in SOD1: Impact on the Metabolism of Fibroblasts Derived from Amyotrophic Lateral Sclerosis Patients

    No full text
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of the upper and lower motor neurons (MNs). About 10% of patients have a family history (familial, fALS); however, most patients seem to develop the sporadic form of the disease (sALS). SOD1 (Cu/Zn superoxide dismutase-1) is the first studied gene among the ones related to ALS. Mutant SOD1 can adopt multiple misfolded conformation, lose the correct coordination of metal binding, decrease structural stability, and form aggregates. For all these reasons, it is complicated to characterize the conformational alterations of the ALS-associated mutant SOD1, and how they relate to toxicity. In this work, we performed a multilayered study on fibroblasts derived from two ALS patients, namely SOD1L145F and SOD1S135N, carrying the p.L145F and the p.S135N missense variants, respectively. The patients showed diverse symptoms and disease progression in accordance with our bioinformatic analysis, which predicted the different effects of the two mutations in terms of protein structure. Interestingly, both mutations had an effect on the fibroblast energy metabolisms. However, while the SOD1L145F fibroblasts still relied more on oxidative phosphorylation, the SOD1S135N fibroblasts showed a metabolic shift toward glycolysis. Our study suggests that SOD1 mutations might lead to alterations in the energy metabolism

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    No full text
    Objectives: Few studies have analyzed factors associated with delirium subtypes. In this study, we investigate factors associated with subtypes of delirium only in patients with dementia to provide insights on the possible prevention and treatments. Design: This is a cross-sectional study nested in the \u201cDelirium Day\u201d study, a nationwide Italian point-prevalence study. Setting and Participants: Older patients admitted to 205 acute and 92 rehabilitation hospital wards. Measures: Delirium was evaluated with the 4-AT and the motor subtypes with the Delirium Motor Subtype Scale. Dementia was defined by the presence of a documented diagnosis in the medical records and/or prescription of acetylcholinesterase inhibitors or memantine prior to admission. Results: Of the 1057 patients with dementia, 35% had delirium, with 25.6% hyperactive, 33.1% hypoactive, 34.5% mixed, and 6.7% nonmotor subtype. There were higher odds of having venous catheters in the hypoactive (OR 1.82, 95% CI 1.18-2.81) and mixed type of delirium (OR 2.23, CI 1.43-3.46), whereas higher odds of urinary catheters in the hypoactive (OR 2.91, CI 1.92-4.39), hyperactive (OR 1.99, CI 1.23-3.21), and mixed types of delirium (OR 2.05, CI 1.36-3.07). We found higher odds of antipsychotics both in the hyperactive (OR 2.87, CI 1.81-4.54) and mixed subtype (OR 1.84, CI 1.24-2.75), whereas higher odds of antibiotics was present only in the mixed subtype (OR 1.91, CI 1.26-2.87). Conclusions and Implications: In patients with dementia, the mixed delirium subtype is the most prevalent followed by the hypoactive, hyperactive, and nonmotor subtype. Motor subtypes of delirium may be triggered by clinical factors, including the use of venous and urinary catheters, and the use of antipsychotics. Future studies are necessary to provide further insights on the possible pathophysiology of delirium in patients with dementia and to address the optimization of the management of potential risk factors

    Drug Prescription and Delirium in Older Inpatients: Results From the Nationwide Multicenter Italian Delirium Day 2015-2016

    No full text
    Objective: This study aimed to evaluate the association between polypharmacy and delirium, the association of specific drug categories with delirium, and the differences in drug-delirium association between medical and surgical units and according to dementia diagnosis. Methods: Data were collected during 2 waves of Delirium Day, a multicenter delirium prevalence study including patients (aged 65 years or older) admitted to acute and long-term care wards in Italy (2015-2016); in this study, only patients enrolled in acute hospital wards were selected (n = 4,133). Delirium was assessed according to score on the 4 "A's" Test. Prescriptions were classified by main drug categories; polypharmacy was defined as a prescription of drugs from 5 or more classes. Results: Of 4,133 participants, 969 (23.4%) had delirium. The general prevalence of polypharmacy was higher in patients with delirium (67.6% vs 63.0%, P =.009) but varied according to clinical settings. After adjustment for confounders, polypharmacy was associated with delirium only in patients admitted to surgical units (OR = 2.9; 95% CI, 1.4-6.1). Insulin, antibiotics, antiepileptics, antipsychotics, and atypical antidepressants were associated with delirium, whereas statins and angiotensin receptor blockers exhibited an inverse association. A stronger association was seen between typical and atypical antipsychotics and delirium in subjects free from dementia compared to individuals with dementia (typical: OR = 4.31; 95% CI, 2.94-6.31 without dementia vs OR = 1.64; 95% CI, 1.19-2.26 with dementia; atypical: OR = 5.32; 95% CI, 3.44-8.22 without dementia vs OR = 1.74; 95% CI, 1.26-2.40 with dementia). The absence of antipsychotics among the prescribed drugs was inversely associated with delirium in the whole sample and in both of the hospital settings, but only in patients without dementia. Conclusions: Polypharmacy is significantly associated with delirium only in surgical units, raising the issue of the relevance of medication review in different clinical settings. Specific drug classes are associated with delirium depending on the clinical setting and dementia diagnosis, suggesting the need to further explore this relationship
    corecore