2,003 research outputs found

    Linear and nonlinear parametric hydrodynamic models for wave energy converters identified from recorded data

    Get PDF
    Ocean waves represent an important resource of renewable energy, which can provide a significant support to the development of more sustainable energy solutions and to the reduction ofCO2 emissions. The amount of extracted energy from the ocean waves can be increased by optimizing the geometry and the control strategy of the wave energy converter (WEC), which both require mathematical hydrodynamic models, able to correctly describe the WEC-fluid interaction. In general, the construction of a model is based on physical laws describing the system under investigation. The hydrodynamic laws are the foundation for a complete description of the WEC-fluid interaction, but their solution represents a very complex and challenging problem. Different approaches to hydrodynamic WEC-fluid interaction modelling, such as computational fluid dynamics (CFD) and linear potential theory (LPT), lead to different mathematical models, each one characterised by different accuracy and computational speed. Fully nonlinear CFD models are able to describe the full range of hydrodynamic effects, but are very computationally expensive. On the other hand, LPT is based on the strong assumptions of inviscid fluid, irrotational flow, small waves and small body motion, which completely remove the hydrodynamic nonlinearity of the WEC-fluid interaction. Linear models have good computational speed, but are not able to properly describe nonlinear hydrodynamic effects, which are relevant in some WEC power production conditions, since WECs are designed to operate over a wide range of wave amplitudes, experience large motions, and generate viscous drag and vortex shedding. The main objective of this thesis is to propose and investigate an alternative pragmatic framework, for hydrodynamic model construction, based on system identification methodologies. The goal is to obtain models which are between the CFD and LPT extremes, a good compromise able to describe the most important nonlinearities of the physical system, without requiring excessively computational time. The identified models remain sufficiently fast and simple to run in real-time. System identification techniques can ‘inject’ into the model only the information contained in the identification data; therefore, the models obtained from LPT data are not able to describe nonlinear hydrodynamic effects. In this thesis, instead of traditional LPT data, experimental wave tank data (both numerical wave tank (NWT), implemented with a CFD software package, and real wave tank (RWT)) are proposed for hydrodynamic model identification, since CFD-NWT and RWT data can contain the full range of nonlinear hydrodynamic effects. In this thesis, different typologies of wave tank experiments and excitation signals are investigated in order to generate informative data and reduce the experiment duration. Indeed, the reduction of the experiment duration represents an important advantage since, in the case of a CFD-NWT, the amount of computation time can become unsustainable whereas, in the case of a RWT, a set of long tank experiments corresponds to an increase of the facility renting costs

    Conditional sign flip via teleportation

    Full text link
    We present a model to realize a probabilistic conditional sign flip gate using only linear optics. The gate operates in the space of number state qubits and is obtained by a nonconventional use of the teleportation protocol. Both a destructive and a nondestructive version of the gate are presented. In the former case an Hadamard gate on the control qubit is combined with a projective teleportation scheme mixing control and target. The success probability is 1/2. In the latter case we need a quantum encoder realized via the interaction of the control qubit with an ancillary state composed of two maximally entangled photons. The success probability is 1/4

    Can Tidal Current Energy Provide Base Load?

    Get PDF
    Tidal energy belongs to the class of intermittent but predictable renewable energy sources. In this paper, we consider a compact set of geographically diverse locations, which have been assessed to have significant tidal stream energy, and attempt to find the degree to which the resource in each location should be exploited so that the aggregate power from all locations has a low variance. An important characteristic of the locations chosen is that there is a good spread in the peak tidal flow times, though the geographical spread is relatively small. We assume that the locations, all on the island of Ireland, can be connected together and also assume a modular set of tidal turbines. We employ multi-objective optimisation to simultaneously minimise variance, maximise mean power and maximise minimum power. A Pareto front of optimal solutions in the form of a set of coefficients determining the degree of tidal energy penetration in each location is generated using a genetic algorithm. While for the example chosen the total mean power generated is not great (circa 100 MW), the case study demonstrated a methodology that can be applied to other location sets that exhibit similar delays between peak tidal flow times

    Routing quantum information in spin chains

    Get PDF
    Two different models for performing efficiently routing of a quantum state are presented. Both cases involve an XX spin chain working as data bus and additional spins that play the role of sender and receivers, one of which is selected to be the target of the quantum state transmission protocol via a coherent quantum coupling mechanism making use of local/global magnetic fields. Quantum routing is achieved, in the first of the models considered, by weakly coupling the sender and the receiver to the data bus. In the second model, strong magnetic fields acting on additional spins located between the sender/receiver and the data bus allow us to perform high fidelity routing.Comment: added references in v

    Identification of Nonlinear Excitation Force Kernels Using Numerical Wave Tank Experiments

    Get PDF
    This paper addresses the mathematical modelling of the relationship between the free surface elevation (FSE) and the excitation force for wave energy devices (excitation force model). While most studies focus on the model relating the FSE to the device motion, the excitation force model is required to complete the mathematical wave energy system description and also plays an important role in excitation force observer design. In the paper, a range of linear and nonlinear modelling methodologies, based on system identification from numerical wave tank tests, are developed for a range of device geometries. The results demonstrate a significant benefit in adopting a nonlinear parameterisation and show that models are heavily dependent on incident wave amplitude

    Optimising numerical wave tank tests for the parametric identification of wave energy device models

    Get PDF
    While linear and nonlinear system identification is a well established field in the control system sciences, it is rarely used in wave energy applications. System identification allows the dynamics of the system to be quantified from measurements of the system inputs and outputs, without significant recourse to first principles modelling. One significant obstacle in using system identification for wave energy devices is the difficulty in accurately quantifying the exact incident wave excitation, in both open ocean and wave tank scenarios. However, the use of numerical wave tanks (NWTs) allow all system variables to be accurately quantified and present some novel system tests not normally available for experimental devices. Considered from a system identification perspective, this paper examines the range of tests available in a NWT from which linear and nonlinear dynamic models can be derived. Recommendations are given as to the optimal configuration of such system identification tests

    Numerical wave tank identification of nonlinear discrete time hydrodynamic models

    Get PDF
    Hydrodynamic models are important for the design, simulation and control of wave energy converters (WECs). Linear hydrodynamic models have formed the basis for this and have been well verified and validated over operating conditions for which small amplitude assumptions apply. At larger amplitudes a number of nonlinear effects may appear. One of these effects is due to the changing bouyancy force as the body moves in and out of the water. In this paper we look at identifying a nonlinear static block to be added the linear hydrodynamic model to account for this effect. The parameters for this nonlinear block are identified from WEC experiments simulated in a numerical wave tank (NWT). The parameters for the linear hydrodynamic model are also identified from NWT experiments. Here we explore the use of a discrete time linear hydrodynamic model which is well suited to the identification procedur

    Numerical wave tank identification of nonlinear discrete time hydrodynamic models

    Get PDF
    Hydrodynamic models are important for the design, simulation and control of wave energy converters (WECs). Linear hydrodynamic models have formed the basis for this and have been well verified and validated over operating conditions for which small amplitude assumptions apply. At larger amplitudes a number of nonlinear effects may appear. One of these effects is due to the changing bouyancy force as the body moves in and out of the water. In this paper we look at identifying a nonlinear static block to be added the linear hydrodynamic model to account for this effect. The parameters for this nonlinear block are identified from WEC experiments simulated in a numerical wave tank (NWT). The parameters for the linear hydrodynamic model are also identified from NWT experiments. Here we explore the use of a discrete time linear hydrodynamic model which is well suited to the identification procedur

    Optimising numerical wave tank tests for the parametric identification of wave energy device models

    Get PDF
    While linear and nonlinear system identification is a well established field in the control system sciences, it is rarely used in wave energy applications. System identification allows the dynamics of the system to be quantified from measurements of the system inputs and outputs, without significant recourse to first principles modelling. One significant obstacle in using system identification for wave energy devices is the difficulty in accurately quantifying the exact incident wave excitation, in both open ocean and wave tank scenarios. However, the use of numerical wave tanks (NWTs) allow all system variables to be accurately quantified and present some novel system tests not normally available for experimental devices. Considered from a system identification perspective, this paper examines the range of tests available in a NWT from which linear and nonlinear dynamic models can be derived. Recommendations are given as to the optimal configuration of such system identification tests

    Mesoscopic continuous and discrete channels for quantum information transfer

    Full text link
    We study the possibility of realizing perfect quantum state transfer in mesoscopic devices. We discuss the case of the Fano-Anderson model extended to two impurities. For a channel with an infinite number of degrees of freedom, we obtain coherent behavior in the case of strong coupling or in weak coupling off-resonance. For a finite number of degrees of freedom, coherent behavior is associated to weak coupling and resonance conditions
    • …
    corecore