242 research outputs found

    The mitochondrial permeability transition pore is a dispensable element for mitochondrial calcium efflux

    Get PDF
    AbstractThe mitochondrial permeability transition pore (mPTP) has long been known to have a role in mitochondrial calcium (Ca2+) homeostasis under pathological conditions as a mediator of the mitochondrial permeability transition and the activation of the consequent cell death mechanism. However, its role in the context of mitochondrial Ca2+ homeostasis is not yet clear. Several studies that were based on PPIF inhibition or knock out suggested that mPTP is involved in the Ca2+ efflux mechanism, while other observations have revealed the opposite result.The c subunit of the mitochondrial F1/FO ATP synthase has been recently found to be a fundamental component of the mPTP. In this work, we focused on the contribution of the mPTP in the Ca2+ efflux mechanism by modulating the expression of the c subunit. We observed that forcing mPTP opening or closing did not impair mitochondrial Ca2+ efflux. Therefore, our results strongly suggest that the mPTP does not participate in mitochondrial Ca2+ homeostasis in a physiological context in HeLa cells

    Sars-CoV-2 Infection Prompts IL-1β-Mediated Inflammation and Reduces IFN-λ Expression in Human Lung Tissue

    Get PDF
    Two years after its spreading, the severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) is still responsible for more than 2000 deaths per day worldwide, despite vaccines and monoclonal antibody countermeasures. Therefore, there is a need to understand the immune–inflammatory pathways that prompt the manifestation of the disease to identify a novel potential target for pharmacological intervention. In this context, the characterization of the main players in the SARS-CoV-2-induced cytokine storm is mandatory. To date, the most characterized have been IL-6 and the class I and II interferons, while less is known about the proinflammatory cytokine IL-1β and class III interferons. Here, we report a preliminary study aimed at the characterization of the lung inflammatory context in COVID-19 patients, with a special focus on IFN-λ and IL-1β. By investigating IFN and inflammatory cytokine patterns by IHC in 10 deceased patients due to COVID-19 infection, compared to 10 control subjects, we reveal that while IFN-β production was increased in COVID-19 patients, IFN-λ was almost abolished. At the same time, the levels of IL-1β were dramatically improved, while IL-6 lung levels seem to be unaffected by the infection. Our findings highlight a central role of IL-1β in prompting lung inflammation after SARS-CoV-2 infection. Together, we show that IFN-λ is negatively affected by viral infection, supporting the idea that IFN-λ administration together with the pharmaceutical blockage of IL-1β represents a promising approach to revert the COVID-19-induced cytokine storm

    Pharmacokinetics of tramadol and its major metabolite after intramuscular administration in piglets

    Get PDF
    Tramadol (T) is a centrally acting atypical opioid used for treatment of dogs. Piglets might experience pain following castration, tooth clipping and tail docking and experimental procedures. The aim of this study was to assess the pharmacokinetics of T and its active metabolite M1 in male piglets after a single intramuscular injection. Six healthy male piglets were administered T (5 mg/kg) intramuscularly. Blood was sampled at scheduled time intervals and drug plasma concentrations evaluated by a validated HPLC method. T plasma concentration was quantitatively detectable from 0.083 to 8 h. M1 was quantified over a shorter time period (0.083–6 h) with a Tmax at 0.821 h. The study demonstrated that piglets produce a larger amount of M1 compared with dogs, horses and goats. The human minimum effective concentration of M1 (40 ng/mL) was exceeded for over 3 h in piglets. If it is assumed to also apply to piglets, it could be speculated that the drug efficacy might exert its action over 3 h or longer. This assumption has to be confirmed by further specific pharmacokinetic/pharmacodynamic studies

    The Multifaceted Roles of Autophagy in Infectious, Obstructive, and Malignant Airway Diseases

    Get PDF
    Autophagy is a highly conserved dynamic process by which cells deliver their contents to lysosomes for degradation, thus ensuring cell homeostasis. In response to environmental stress, the induction of autophagy is crucial for cell survival. The dysregulation of this degradative process has been implicated in a wide range of pathologies, including lung diseases, representing a relevant potential target with significant clinical outcomes. During lung disease progression and infections, autophagy may exert both protective and harmful effects on cells. In this review, we will explore the implications of autophagy and its selective forms in several lung infections, such as SARS-CoV-2, Respiratory Syncytial Virus (RSV) and Mycobacterium tuberculosis (Mtb) infections, and different lung diseases such as Cystic Fibrosis (CF), Chronic Obstructive Pulmonary Disease (COPD), and Malignant Mesothelioma (MM)

    Translocation of signalling proteins to the plasma membrane revealed by a new bioluminescent procedure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation by extracellular ligands of G protein-coupled (GPCRs) and tyrosine kinase receptors (RTKs), results in the generation of second messengers that in turn control specific cell functions. Further, modulation/amplification or inhibition of the initial signalling events, depend on the recruitment onto the plasma membrane of soluble protein effectors.</p> <p>High throughput methodologies to monitor quantitatively second messenger production, have been developed over the last years and are largely used to screen chemical libraries for drug development. On the contrary, no such high throughput methods are yet available for the other aspect of GPCRs regulation, i.e. protein translocation to the plasma membrane, despite the enormous interest of this phenomenon for the modulation of receptor downstream functions. Indeed, to date, the experimental procedures available are either inadequate or complex and expensive.</p> <p>Results</p> <p>Here we describe the development of a novel conceptual approach to the study of cytosolic proteins translocation to the inner surface of the plasma membrane. The basis of the technique consists in: i) generating chimeras between the protein of interests and the calcium (Ca<sup>2+</sup>)-sensitive, luminescent photo-protein, aequorin and ii) taking advantage of the large Ca<sup>2+</sup> concentration [Ca<sup>2+</sup>] difference between bulk cytosolic and the sub-plasma membrane rim.</p> <p>Conclusion</p> <p>This approach, that keeps unaffected the translocation properties of the signalling protein, can in principle be applied to any protein that, upon activation, moves from the cytosol to the plasma membrane.</p> <p>Thus, not only the modulation of GPCRs and RTKs can be investigated in this way, but that of all other proteins that can be recruited to the plasma membrane also independently of receptor activation.</p> <p>Moreover, its automated version, which can provide information about the kinetics and concentration-dependence of the process, is also applicable to high throughput screening of drugs affecting the translocation process.</p

    Autophagy and mitophagy biomarkers are reduced in sera of patients with Alzheimer's disease and mild cognitive impairment

    Get PDF
    Dementia is a neurocognitive disorder characterized by a progressive memory loss and impairment in cognitive and functional abilities. Autophagy and mitophagy are two important cellular processes by which the damaged intracellular components are degraded by lysosomes. To investigate the contribution of autophagy and mitophagy in degenerative diseases, we investigated the serum levels of specific autophagic markers (ATG5 protein) and mitophagic markers (Parkin protein) in a population of older patients by enzyme-linked immunosorbent assay. Two hundred elderly (≥65 years) outpatients were included in the study: 40 (20 F and 20 M) with mild-moderate late onset Alzheimer's disease (AD); 40 (20 F and 20 M) affected by vascular dementia (VAD); 40 with mild cognitive impairment (MCI); 40 (20 F and 20 M) with "mixed" dementia (MD); 40 subjects without signs of cognitive impairment were included as sex-matched controls. Our data indicated that, in serum samples, ATG5 and Parkin were both elevated in controls, and that VAD compared with AD, MCI and MD (all p &lt; 0.01). Patients affected by AD, MD, and MCI showed significantly reduced circulating levels of both ATG5 and Parkin compared to healthy controls and VAD individuals, reflecting a significant down-regulation of autophagy and mitophagy pathways in these groups of patients. The measurement of serum levels of ATG5 and Parkin may represent an easily accessible diagnostic tool for the early monitoring of patients with cognitive decline

    Mitophagy in Cardiovascular Diseases

    Get PDF
    Cardiovascular diseases are one of the leading causes of death. Increasing evidence has shown that pharmacological or genetic targeting of mitochondria can ameliorate each stage of these pathologies, which are strongly associated with mitochondrial dysfunction. Removal of inefficient and dysfunctional mitochondria through the process of mitophagy has been reported to be essential for meeting the energetic requirements and maintaining the biochemical homeostasis of cells. This process is useful for counteracting the negative phenotypic changes that occur during cardiovascular diseases, and understanding the molecular players involved might be crucial for the development of potential therapies. Here, we summarize the current knowledge on mitophagy (and autophagy) mechanisms in the context of heart disease with an important focus on atherosclerosis, ischemic heart disease, cardiomyopathies, heart failure, hypertension, arrhythmia, congenital heart disease and peripheral vascular disease. We aim to provide a complete background on the mechanisms of action of this mitochondrial quality control process in cardiology and in cardiac surgery by also reviewing studies on the use of known compounds able to modulate mitophagy for cardioprotective purposes

    Molecular Mechanisms of Autophagy in Cancer Development, Progression, and Therapy

    Get PDF
    Autophagy is an evolutionarily conserved and tightly regulated process that plays an important role in maintaining cellular homeostasis. It involves regulation of various genes that function to degrade unnecessary or dysfunctional cellular components, and to recycle metabolic substrates. Autophagy is modulated by many factors, such as nutritional status, energy level, hypoxic conditions, endoplasmic reticulum stress, hormonal stimulation and drugs, and these factors can regulate autophagy both upstream and downstream of the pathway. In cancer, autophagy acts as a double-edged sword depending on the tissue type and stage of tumorigenesis. On the one hand, autophagy promotes tumor progression in advanced stages by stimulating tumor growth. On the other hand, autophagy inhibits tumor development in the early stages by enhancing its tumor suppressor activity. Moreover, autophagy drives resistance to anticancer therapy, even though in some tumor types, its activation induces lethal effects on cancer cells. In this review, we summarize the biological mechanisms of autophagy and its dual role in cancer. In addition, we report the current understanding of autophagy in some cancer types with markedly high incidence and/or lethality, and the existing therapeutic strategies targeting autophagy for the treatment of cancer
    corecore