6 research outputs found

    Ultrasounds induce blood-brain barrier opening across a sonolucent polyolefin plate in an in vitro isolated brain preparation

    Get PDF
    The blood-brain barrier (BBB) represents a major obstacle to the delivery of drugs to the central nervous system. The combined use of low-intensity pulsed ultrasound waves and intravascular microbubbles (MB) represents a promising solution to this issue, allowing reversible disruption of the barrier. In this study, we evaluate the feasibility of BBB opening through a biocompatible, polyolefin-based plate in an in vitro whole brain model. Twelve in vitro guinea pig brains were employed; brains were insonated using a planar transducer with or without interposing the polyolefin plate during arterial infusion of MB. Circulating MBs were visualized with an ultrasonographic device with a linear probe. BBB permeabilization was assessed by quantifying at confocal microscopy the extravasation of FITC-albumin perfused after each treatment. US-treated brains displayed BBB permeabilization exclusively in the volume under the US beam; no significant differences were observed between brains insonated with or without the polyolefin plate. Control brains not perfused with MB did not show signs of FITC-albumin extravasation. Our preclinical study suggests that polyolefin cranial plate could be implanted as a skull replacement to maintain craniotomic windows and perform post-surgical repeated BBB opening with ultrasound guidance to deliver therapeutic agents to the central nervous system

    Intracranial Sonodynamic Therapy With 5-Aminolevulinic Acid and Sodium Fluorescein: Safety Study in a Porcine Model

    Get PDF
    BackgroundSonodynamic therapy (SDT) is an emerging ultrasound-based treatment modality for malignant gliomas which combines ultrasound with sonosensitizers to produce a localized cytotoxic and modulatory effect. Tumor-specificity of the treatment is achieved by the selective extravasation and accumulation of sonosensitizers in the tumor-bearing regions. The aim of this study is to demonstrate the safety of low-intensity ultrasonic irradiation of healthy brain tissue after the administration of FDA-approved sonosensitizers used for SDT in experimental studies in an in vivo large animal model.MethodsIn vivo safety of fluorescein (Na-Fl)- and 5 aminolevulinic acid (5-ALA)-mediated low-intensity ultrasound irradiation of healthy brain parenchyma was assessed in two sets of four healthy swine brains, using the magnetic resonance imaging (MRI)-guided Insightec ExAblate 4000 220 kHz system. After administration of the sonosensitizers, a wide fronto-parietal craniotomy was performed in pig skulls to allow transmission of ultrasonic beams. Sonication was performed on different spots within the thalamus and periventricular white matter with continuous thermal monitoring. Sonication-related effects were investigated with MRI and histological analysis.ResultsPost-treatment MRI images acquired within one hour following the last sonication, on day one, and day seven did not visualize any sign of brain damage. On histopathology, no signs of necrosis or apoptosis attributable to the ultrasonic treatments were shown in target areas.ConclusionsThe results of the present study suggest that either Na-FL or 5-ALA-mediated sonodynamic therapies under MRI-guidance with the current acoustic parameters are safe towards healthy brain tissue in a large in vivo model. These results further support growing interest in clinical translation of sonodynamic therapy for intracranial gliomas and other brain tumors

    Sonodynamic Therapy for the Treatment of Intracranial Gliomas

    No full text
    High-grade gliomas are the most common and aggressive malignant primary brain tumors. Current therapeutic schemes include a combination of surgical resection, radiotherapy and chemotherapy; even if major advances have been achieved in Progression Free Survival and Overall Survival for patients harboring high-grade gliomas, prognosis still remains poor; hence, new therapeutic options for malignant gliomas are currently researched. Sonodynamic Therapy (SDT) has proven to be a promising treatment combining the effects of low-intensity ultrasound waves with various sound-sensitive compounds, whose activation leads to increased immunogenicity of tumor cells, increased apoptotic rates and decreased angiogenetic potential. In addition, this therapeutic technique only exerts its cytotoxic effects on tumor cells, while both ultrasound waves and sensitizing compound are non-toxic per se. This review summarizes the present knowledge regarding mechanisms of action of SDT and currently available sonosensitizers and focuses on the preclinical and clinical studies that have investigated its efficacy on malignant gliomas. To date, preclinical studies implying various sonosensitizers and different treatment protocols all seem to confirm the anti-tumoral properties of SDT, while first clinical trials will soon start recruiting patients. Accordingly, it is crucial to conduct further investigations regarding the clinical applications of SDT as a therapeutic option in the management of intracranial gliomas

    The Immunomodulatory Effects of Fluorescein-Mediated Sonodynamic Treatment Lead to Systemic and Intratumoral Depletion of Myeloid-Derived Suppressor Cells in a Preclinical Malignant Glioma Model

    No full text
    Fluorescein-mediated sonodynamic therapy (FL-SDT) is an extremely promising approach for glioma treatment, resulting from the combination of low-intensity focused ultrasound (FUS) with a sonosensitizer. In the present study, we evaluated the efficacy and immunomodulation of SDT with fluorescein as the sonosensitizer in immunocompetent GL261 glioma mice for the first time. In vitro studies demonstrated that the exposure of GL261 cells to FL-SDT induced immunogenic cell death and relevant upregulation of MHC class I, CD80 and CD86 expression. In vivo studies were then performed to treat GL261 glioma-bearing mice with FL-SDT, fluorescein alone, or FUS alone. Perturbation of the glioma-associated macrophage subset within the immune microenvironment was induced by all the treatments. Notably, a relevant depletion of myeloid-derived suppressor cells (MDSCs) and concomitant robust infiltration of CD8+ T cells were observed in the SDT-FL-treated mice, resulting in a significant radiological delay in glioma progression and a consequent improvement in survival. Tumor control and improved survival were also observed in mice treated with FL alone (median survival 41.5 days, p > 0.0001 compared to untreated mice), reflecting considerable modulation of the immune microenvironment. Interestingly, a high circulating lymphocyte-to-monocyte ratio and a very low proportion of MDSCs were predictive of better survival in FL- and FL-SDT-treated mice than in untreated and FUS-treated mice, in which elevated monocyte and MDSC frequencies correlated with worse survival. The immunostimulatory potential of FL-SDT treatment and the profound modulation of most immunosuppressive components within the microenvironment encouraged the exploration of the combination of FL-SDT with immunotherapeutic strategies

    Focused Ultrasound for Brain Diseases: A Review of Current Applications and Future Perspectives

    No full text
    Neurosurgical procedures heavily rely on technological innovation to improve patients care. Focused Ultrasound (FUS) represents a novel and ever-growing technology with roots dating back to the 19th century. Now surrounded by state-of-the-art equipment, such as MRI guidance, thermometry, neuronavigation guidance, artificial acoustic windows and implantable devices, FUS employs mechanical waves to deliver a wide spectrum of physical effects, in a non-invasive and precise fashion. Even if most of its applications are nowadays mostly experimental or at the very initial steps into clinical practice, FUS has seen its tools being used in a growing number of diseases and applications, ranging from oncology to cerebrovascular, functional disorders and even neuro- and immune-modulation. This general review aims to provide a comprehensive vision of FUS application for neurological conditions

    A virtual biopsy of liver parenchyma to predict the outcome of liver resection

    No full text
    The preoperative risk assessment of liver resections (LR) is still an open issue. Liver parenchyma characteristics influence the outcome but cannot be adequately evaluated in the preoperative setting. The present study aims to elucidate the contribution of the radiomic analysis of non-tumoral parenchyma to the prediction of complications after elective LR. All consecutive patients undergoing LR between 2017 and 2021 having a preoperative computed tomography (CT) were included. Patients with associated biliary/colorectal resection were excluded. Radiomic features were extracted from a virtual biopsy of nontumoral liver parenchyma (a 2 mL cylinder) outlined in the portal phase of preoperative CT. Data were internally validated. Overall, 378 patients were analyzed (245 males/133 females-median age 67 years-39 cirrhotics). Radiomics increased the performances of the preoperative clinical models for both liver dysfunction (at internal validaton, AUC = 0.727 vs. 0.678) and bile leak (AUC = 0.744 vs. 0.614). The final predictive model combined clinical and radiomic variables: for bile leak, segment 1 resection, exposure of Glissonean pedicles, HU-related indices, NGLDM_Contrast, GLRLM indices, and GLZLM_ZLNU; for liver dysfunction, cirrhosis, liver function tests, major hepatectomy, segment 1 resection, and NGLDM_Contrast. The combined clinical-radiomic model for bile leak based on preoperative data performed even better than the model including the intraoperative data (AUC = 0.629). The textural features extracted from a virtual biopsy of non-tumoral liver parenchyma improved the prediction of postoperative liver dysfunction and bile leak, implementing information given by standard clinical data. Radiomics should become part of the preoperative assessment of candidates to LR.[GRAPHICS]
    corecore