63 research outputs found

    Free Fermions Violate the Area Law For Entanglement Entropy

    Full text link
    We show that the entanglement entropy associated to a region grows faster than the area of its boundary surface. This is done by proving a special case of a conjecture due to Widom that yields a surprisingly simple expression for the leading behaviour of the entanglement entropy.Comment: Proceedings of the 9th Hellenic School on Elementary Particle Physics and Gravity, Corfu 2009. 4 page

    Szego limit theorem for operators with discontinuous symbols and applications to entanglement entropy

    Full text link
    The main result in this paper is a one term Szego type asymptotic formula with a sharp remainder estimate for a class of integral operators of the pseudodifferential type with symbols which are allowed to be non-smooth or discontinuous in both position and momentum. The simplest example of such symbol is the product of the characteristic functions of two compact sets, one in real space and the other in momentum space. The results of this paper are used in a study of the violation of the area entropy law for free fermions in [18]. This work also provides evidence towards a conjecture due to Harold Widom.Comment: 18 pages, major revision, to appear in Int. Math. Res. No

    Entanglement entropy of fermions in any dimension and the Widom conjecture

    Full text link
    We show that entanglement entropy of free fermions scales faster then area law, as opposed to the scaling Ld1L^{d-1} for the harmonic lattice, for example. We also suggest and provide evidence in support of an explicit formula for the entanglement entropy of free fermions in any dimension dd, Sc(Γ,Ω)Ld1logLS\sim c(\partial\Gamma,\partial\Omega)\cdot L^{d-1}\log L as the size of a subsystem LL\to\infty, where Γ\partial\Gamma is the Fermi surface and Ω\partial\Omega is the boundary of the region in real space. The expression for the constant c(Γ,Ω)c(\partial\Gamma,\partial\Omega) is based on a conjecture due to H. Widom. We prove that a similar expression holds for the particle number fluctuations and use it to prove a two sided estimates on the entropy SS.Comment: Final versio

    Universality for orthogonal and symplectic Laguerre-type ensembles

    Full text link
    We give a proof of the Universality Conjecture for orthogonal (beta=1) and symplectic (beta=4) random matrix ensembles of Laguerre-type in the bulk of the spectrum as well as at the hard and soft spectral edges. Our results are stated precisely in the Introduction (Theorems 1.1, 1.4, 1.6 and Corollaries 1.2, 1.5, 1.7). They concern the appropriately rescaled kernels K_{n,beta}, correlation and cluster functions, gap probabilities and the distributions of the largest and smallest eigenvalues. Corresponding results for unitary (beta=2) Laguerre-type ensembles have been proved by the fourth author in [23]. The varying weight case at the hard spectral edge was analyzed in [13] for beta=2: In this paper we do not consider varying weights. Our proof follows closely the work of the first two authors who showed in [7], [8] analogous results for Hermite-type ensembles. As in [7], [8] we use the version of the orthogonal polynomial method presented in [25], [22] to analyze the local eigenvalue statistics. The necessary asymptotic information on the Laguerre-type orthogonal polynomials is taken from [23].Comment: 75 page

    Lower order terms in Szego type limit theorems on Zoll manifolds

    Full text link
    This is a detailed version of the paper math.FA/0212273. The main motivation for this work was to find an explicit formula for a "Szego-regularized" determinant of a zeroth order pseudodifferential operator (PsDO) on a Zoll manifold. The idea of the Szego-regularization was suggested by V. Guillemin and K. Okikiolu. They have computed the second term in a Szego type expansion on a Zoll manifold of an arbitrary dimension. In the present work we compute the third asymptotic term in any dimension. In the case of dimension 2, our formula gives the above mentioned expression for the Szego-redularized determinant of a zeroth order PsDO. The proof uses a new combinatorial identity, which generalizes a formula due to G.A.Hunt and F.J.Dyson. This identity is related to the distribution of the maximum of a random walk with i.i.d. steps on the real line. The proof of this combinatorial identity together with historical remarks and a discussion of probabilistic and algebraic connections has been published separately.Comment: 39 pages, full version, submitte

    Gravitational effective action and entanglement entropy in UV modified theories with and without Lorentz symmetry

    Full text link
    We calculate parameters in the low energy gravitational effective action and the entanglement entropy in a wide class of theories characterized by improved ultraviolet (UV) behavior. These include i) local and non-local Lorentz invariant theories in which inverse propagator is modified by higher-derivative terms and ii) theories described by non-Lorentz invariant Lifshitz type field operators. We demonstrate that the induced cosmological constant, gravitational couplings and the entropy are sensitive to the way the theory is modified in UV. For non-Lorentz invariant theories the induced gravitational effective action is of the Horava-Lifshitz type. We show that under certain conditions imposed on the dimension of the Lifshitz operator the couplings of the extrinsic curvature terms in the effective action are UV finite. Throughout the paper we systematically exploit the heat kernel method appropriately generalized for the class of theories under consideration.Comment: Final version, to appear in Nuclear Physics B, LaTeX, 37 pages, 1 figur
    corecore