39 research outputs found

    Estimating fluctuations in neural representations of uncertain environments

    Full text link
    Neural Coding analyses often reflect an assumption that neural populations respond uniquely and consistently to particular stimuli. For example, analyses of spatial remapping in hippocampal populations often assume that each environment has one unique representation and that remapping occurs over long time scales as an animal traverses between distinct environments. However, as neuroscience experiments begin to explore more naturalistic tasks and stimuli, and reflect more ambiguity in neural representations, methods for analyzing population neural codes must adapt to reflect these features. In this paper, we develop a new state-space modeling framework to address two important issues related to remapping. First, neurons may exhibit significant trial-to-trial or moment-to-moment variability in the firing patterns used to represent a particular environment or stimulus. Second, in ambiguous environments and tasks that involve cognitive uncertainty, neural populations may rapidly fluctuate between multiple representations. The statespace model addresses these two issues by integrating an observation model, which allows for multiple representations of the same stimulus or environment, with a state model, which characterizes the moment-by-moment probability of a shift in the neural representation. These models allow us to compute instantaneous estimates of the stimulus or environment currently represented by the population. We demonstrate the application of this approach to the analysis of population activity in the CA1 region of hippocampus of a mouse moving through ambiguous virtual environments. Our analyses demonstrate that many hippocampal cells express significant trial-to-trial variability in their representations and that the population representation can fluctuate rapidly between environments within a single trial when spatial cues are most ambiguous.Accepted manuscrip

    Evaluation of the Oscillatory Interference Model of Grid Cell Firing through Analysis and Measured Period Variance of Some Biological Oscillators

    Get PDF
    Models of the hexagonally arrayed spatial activity pattern of grid cell firing in the literature generally fall into two main categories: continuous attractor models or oscillatory interference models. Burak and Fiete (2009, PLoS Comput Biol) recently examined noise in two continuous attractor models, but did not consider oscillatory interference models in detail. Here we analyze an oscillatory interference model to examine the effects of noise on its stability and spatial firing properties. We show analytically that the square of the drift in encoded position due to noise is proportional to time and inversely proportional to the number of oscillators. We also show there is a relatively fixed breakdown point, independent of many parameters of the model, past which noise overwhelms the spatial signal. Based on this result, we show that a pair of oscillators are expected to maintain a stable grid for approximately t = 5µ3/(4πσ)2 seconds where µ is the mean period of an oscillator in seconds and σ2 its variance in seconds2. We apply this criterion to recordings of individual persistent spiking neurons in postsubiculum (dorsal presubiculum) and layers III and V of entorhinal cortex, to subthreshold membrane potential oscillation recordings in layer II stellate cells of medial entorhinal cortex and to values from the literature regarding medial septum theta bursting cells. All oscillators examined have expected stability times far below those seen in experimental recordings of grid cells, suggesting the examined biological oscillators are unfit as a substrate for current implementations of oscillatory interference models. However, oscillatory interference models can tolerate small amounts of noise, suggesting the utility of circuit level effects which might reduce oscillator variability. Further implications for grid cell models are discussed

    Experience-dependent contextual codes in the hippocampus.

    No full text
    The hippocampus contains neural representations capable of supporting declarative memory. Hippocampal place cells are one such representation, firing in one or few locations in a given environment. Between environments, place cell firing fields remap (turning on/off or moving to a new location) to provide a population-wide code for distinct contexts. However, the manner by which contextual features combine to drive hippocampal remapping remains a matter of debate. Using large-scale in vivo two-photon intracellular calcium recordings in mice during virtual navigation, we show that remapping in the hippocampal region CA1 is driven by prior experience regarding the frequency of certain contexts and that remapping approximates an optimal estimate of the identity of the current context. A simple associative-learning mechanism reproduces these results. Together, our findings demonstrate that place cell remapping allows an animal to simultaneously identify its physical location and optimally estimate the identity of the environment

    Parahippocampal neurons encode task-relevant information for goal-directed navigation

    No full text
    A behavioral strategy crucial to survival is directed navigation to a goal, such as a food or home location. One potential neural substrate for supporting goal-directed navigation is the parahippocampus, which contains neurons that represent an animal’s position, orientation, and movement through the world, and that change their firing activity to encode behaviorally relevant variables such as reward. However, little prior work on the parahippocampus has considered how neurons encode variables during goal-directed navigation in environments that dynamically change. Here, we recorded single units from rat parahippocampal cortex while subjects performed a goal-directed task. The maze dynamically changed goal-locations via a visual cue on a trial-to-trial basis, requiring subjects to use cue-location associations to receive reward. We observed a mismatch-like signal, with elevated neural activity on incorrect trials, leading to rate-remapping. The strength of this remapping correlated with task performance. Recordings during open-field foraging allowed us to functionally define navigational coding for a subset of the neurons recorded in the maze. This approach revealed that head-direction coding units remapped more than other functional-defined units. Taken together, this work thus raises the possibility that during goal-directed navigation, parahippocampal neurons encode error information reflective of an animal’s behavioral performance

    Nicotinic modulation of glutamatergic synaptic transmission in region CA3 of the hippocampus

    No full text
    Cholinergic modulation of synaptic transmission in the hippocampus appears to be involved in learning, memory and attentional processes. In brain slice preparations of hippocampal region CA3, we have explored the effect of nicotine on the afferent connections of stratum lacunosum moleculare (SLM) vs. the intrinsic connections of stratum radiatum (SR). Nicotine application had a laminaselective effect, causing changes in synaptic transmission only in SLM. The nicotinic effect in SLM was characterized by a transient decrease in synaptic potential size followed by a longer period of enhancement of synaptic transmission. The effect was blocked by c-aminobutyric acid (GABA)ergic antagonists, indicating the role of GABAergic interneurons in the observed nicotinic effect. The biphasic nature of the nicotinic effect could be due to a difference in receptor subtypes, as supported by the effects of the nicotinic antagonists mecamylamine and methyllycaconitine. Nicotinic modulation of glutamatergic synaptic transmission could complement muscarinic suppression of intrinsic connections, amplifying incoming information and providing a physiological mechanism for the memory-enhancing effect of nicotine

    Difference in Time Course of Modulation of Synaptic Transmission by Group II Versus Group III Metabotropic Glutamate Receptors in Region CA1 of the Hippocampus

    No full text
    ABSTRACT: We investigated the time course of modulation of synaptic transmission by group II and group III metabotropic glutamate receptors in region CA1 of the hippocampus. In the presence of 50 mM picrotoxin, pressure pulse application of 1 mM glutamate resulted in a fast onset of suppression of synaptic transmission in stratum lacunosum moleculare and a slower onset of suppression in stratum radiatum, with both effects returning to baseline over the course of several minutes. Application of 50 mM of the group II agonist (2R,4R)-APDC in stratum lacunosum moleculare resulted in the same fast onset of suppression while having no effect in stratum radiatum. Pressure pulse application of 100 mM DL-AP4instratum lacunosum moleculare and stratum radiatum resulted in a much slower onset of suppression of synaptic transmission than (2R,4R)-APDC. Suppression by (2R,4R)-APDC was accompanied by a rapid enhancement of paired pulse facilitation, indicative of a presynaptic mechanism. This demonstrates that activation of group II mGluRs in the hippocampus causes a fast onset of suppression in stratum lacunosum moleculare, while activation of group III mGluRs causes a slower onset of suppression. The difference in time course for group II vs. group III mGluRs suggests a different functional role, with group II playing a potential role in making synapses act as low pass filters. VC 2006 Wiley-Liss, Inc. KEY WORDS: hippocampus; metabotropic glutamate receptor; synaptic transmission; time course; CA
    corecore