3,688 research outputs found

    Single Leptoquark Production at e+ee^+e^- and γγ\gamma\gamma Colliders

    Full text link
    We consider single production of leptoquarks (LQ's) at e+ee^+e^- and γγ\gamma\gamma colliders, for two values of the centre-of-mass energy, s=500\sqrt{s}=500 GeV and 1 TeV. We find that LQ's which couple within the first generation are observable for LQ masses almost up to the kinematic limit, both at e+ee^+e^- and γγ\gamma\gamma colliders, for the LQ coupling strength equal to αem\alpha_{em}. The cross sections for single production of 2nd2^{nd}- and 3rd3^{rd}-generation LQ's at e+ee^+e^- colliders are too small to be observable. In γγ\gamma\gamma collisions, on the other hand, 2nd2^{nd}-generation LQ's with masses much larger than s/2\sqrt{s}/2 can be detected. However, 3rd3^{rd}-generation LQ's can be seen at γγ\gamma\gamma colliders only for masses at most s/2\sim\sqrt{s}/2, making their observation more probable via the pair production mechanism.Comment: plain TeX, 14 pages, 6 figures (not included but available on request), some minor changes to the text, one reference added, figures and conclusions unchanged, UdeM-LPN-TH-93-152, McGill-93/2

    Evolution of Universe to the present inert phase

    Full text link
    We assume that current state of the Universe can be described by the Inert Doublet Model, containing two scalar doublets, one of which is responsible for EWSB and masses of particles and the second one having no couplings to fermions and being responsible for dark matter. We consider possible evolutions of the Universe to this state during cooling down of the Universe after inflation. We found that in the past Universe could pass through phase states having no DM candidate. In the evolution via such states in addition to a possible EWSB phase transition (2-nd order) the Universe sustained one 1-st order phase transition or two phase transitions of the 2-nd order.Comment: 19 pages, 3 figure

    Evolution of Universe to the present inert phase

    Full text link
    We assume that current state of the Universe can be described by the Inert Doublet Model, containing two scalar doublets, one of which is responsible for EWSB and masses of particles and the second one having no couplings to fermions and being responsible for dark matter. We consider possible evolutions of the Universe to this state during cooling down of the Universe after inflation. We found that in the past Universe could pass through phase states having no DM candidate. In the evolution via such states in addition to a possible EWSB phase transition (2-nd order) the Universe sustained one 1-st order phase transition or two phase transitions of the 2-nd order.Comment: 19 pages, 3 figure

    The visible effect of a very heavy magnetic monopole at colliders

    Get PDF
    If a heavy Dirac monopole exists, the light-to-light scattering below the monopole production threshold is enhanced due to strong coupling of monopoles to photons. At the next Linear Collider with electron beam energy 250 GeV this photon pair production could be observable at monopole masses less than 2.5-6.4 TeV in the e+ee^+e^- mode or 3.7-10 TeV in the γγ\gamma\gamma mode, depending on the monopole spin. At the upgraded Tevatron such an effect is expected to be visible at monopole masses below 1-2.5 TeV. The strong dependence on the initial photon polarizations allows to find the monopole spin in experiments at e+ee^+e^- and γγ\gamma\gamma colliders. We consider the ZγZ\gamma production and the 3γ3\gamma production at e+ee^+e^- and pppp or ppˉp\bar{p} colliders via the same monopole loop. The possibility to discover these processes is significantly lower than that of the γγ\gamma\gamma case.Comment: 18 pages, 2 figures, RevTe

    Chain length dependence of the polymer-solvent critical point parameters

    Full text link
    We report grand canonical Monte Carlo simulations of the critical point properties of homopolymers within the Bond Fluctuation model. By employing Configurational Bias Monte Carlo methods, chain lengths of up to N=60 monomers could be studied. For each chain length investigated, the critical point parameters were determined by matching the ordering operator distribution function to its universal fixed-point Ising form. Histogram reweighting methods were employed to increase the efficiency of this procedure. The results indicate that the scaling of the critical temperature with chain length is relatively well described by Flory theory, i.e. \Theta-T_c\sim N^{-0.5}. The critical volume fraction, on the other hand, was found to scale like \phi_c\sim N^{-0.37}, in clear disagreement with the Flory theory prediction \phi_c\sim N^{-0.5}, but in good agreement with experiment. Measurements of the chain length dependence of the end-to-end distance indicate that the chains are not collapsed at the critical point.Comment: 13 Pages Revtex, 9 epsf embedded figs. gzipped tar file. To appear in J. Chem. Phy

    Dependence of the critical temperature on the Higgs field reparametrization

    Full text link
    We show that, despite of the reparametrization symmetry of the Lagrangian describing the interaction between a scalar field and gauge vector bosons, the dynamics of the Higgs mechanism is really affected by the representation gauge chosen for the Higgs field. Actually, we find that, varying the parametrization for the two degrees of freedom of the complex scalar field, we obtain different expressions for the Higgs mass: in its turn this entails different expressions for the critical temperatures, ranging from zero to a maximum value, as well as different expressions for other basic thermodynamical quantities.Comment: revtex, 12 pages, 2 eps figure

    The Q2Q^2 dependence of the hard diffractive photoproduction of vector meson or photon and the range of pQCD validity

    Get PDF
    We consider two coupled problems. We study the dependence on photon virtuality Q2Q^2 for the semihard quasi--elastic photoproduction of neutral vector mesons on a quark, gluon or real photon (at sp2,  Q2;  p2μ2(0.3s\gg p_{\bot}^2,\;Q^2; \; p_{\bot}^2\gg \mu^2 \approx (0.3 GeV)2^2). To this end we calculate the corresponding amplitudes (in an analytical form) in the lowest nontrivial approximation of perturbative QCD. It is shown that the amplitude for the production of light meson varies very rapidly with the photon virtuality near Q2=0Q^2=0. We estimate the bound of the pQCD validity region for such processes. For the real incident photon the obtained bound for the ρ\rho meson production is very high. This bound decreases fast with the increase of Q2Q^2, and we expect that the virtual photoproduction at HERA gives opportunity to test the pQCD results. The signature of this region is discussed. For the hard Compton effect the pQCD should work good at not too high pp_{\bot}, and this effect seems measurable at HERA.Comment: ReVTeX, 36 pages, 5 Postscript figures, uses epsf.st

    Vortex Origin of Tricritical Point in Ginzburg-Landau Theory

    Full text link
    Motivated by recent experimental progress in the critical regime of high-TcT_c superconductors we show how the tricritical point in a superconductor can be derived from the Ginzburg-Landau theory as a consequence of vortex fluctuations. Our derivation explains why usual renormalization group arguments always produce a first-order transition, in contrast to experimental evidence and Monte Carlo simulations.Comment: 4 pages,1 figur
    corecore