11 research outputs found

    Filmic geographies: audio-visual, embodied-material

    Get PDF
    Although conventionally described as a ‘visual’ method, film-making is also increasingly used within research on embodiment. However, much remains to be said about the ability of filmic methods to enhance researchers’ capacity to think and research through the body. Drawing on my experience of making four research films, in this paper, I attempt to advance this agenda in three steps. First, I introduce anthropological work on the filming body to shed light on the technologically-mediated encounters that enfold around a camera and discuss how they might inform geographical thinking. Second, I describe the corporeally-mediated object ecologies that take shape within the filming setting and highlight how a camera might make objects ‘speak’. Finally, I discuss the affective dimension of screening research films to research participants and the contribution of such intense events to the articulation of collective matters of concerns. Through these three themes, I make the case for understanding knowledge production as located not merely in encounters with filmed audio-visual content, but also in the embodied-material encounters of bodies and objects around the filming and screening apparatus. I finally discuss the implications of these reflections for conceptualising the ‘body’ within embodied methods in social and cultural geography

    Bend it, shape it: new opportunities in timber technologies

    No full text
    This paper presents microwave assisted bending and deformation methods to create new bent and shaped timber components for product design. The science is demonstrated through new timber machining techniques, design examples and new performance specifications for microwave modified wood. This paper outlines six production and manufacturing techniques that demonstrate, tabulate and compare these new research outcomes. Product design examples, prototypes and final design proposals are included

    Characterisation of genes encoding a nucleoside monophosphate kinase and a L35 ribosomal protein from Babesia bovis

    No full text
    We have sequenced a region of the Babesia bovis nuclear genome that encodes a L35 ribosomal protein homologue (b/35) and a putative nucleoside monophosphate kinase (bnmk) that is most similar to the adenylate kinase of gram-positive bacteria and the mitochondrial form of adenylate kinase in eukaryotes. BNMK appears to be unique in that it is the first eukaryotic family member to feature a putative zinc-binding domain. bnmk and b/35 are closely linked and transcribed from opposite DNA strands. Examination of the gene structures indicate that the coding regions contain small intervening sequences that obey the GT-AG rule of eukaryotic spliceosomal introns. The single intron separates the b/35 initiation codon from the remainder of the coding region and the 6-exon bnmk gene does not appear to be differentially spliced. Both genes utilise multiple polyadenylation sites and the canonical mammalian polyadenylation signal AATAAA is absent from their 3' untranslated regions. Primer extension analyses reveal that the bnmk gene utilises a cluster of transcription start points, one of which is used most frequently. The bnmk mRNA 5' end does not appear to be cis- or trans-spliced. We report here the first evidence of intronic sequences, as well as heterogeneous 5' and 3' ends for mRNA of a member of the Babesia genus

    The Impact of Sediment and Carbon Fluxes on the Biogeochemistry of Methane and Sulfur in Littoral Baltic Sea Sediments (Himmerfjärden, Sweden).

    No full text
    Three sediment stations in Himmerfjärden estuary (Baltic Sea, Sweden) were sampled in May 2009 and June 2010 to test how low salinity (5–7 ‰), high primary productivity partially induced by nutrient input from an upstream waste water treatment plant, and high overall sedimentation rates impact the sedimentary cycling of methane and sulfur. Rates of sediment accumulation determined using 210Pbexcess and 137Cs were very high (0.65–0.95 cm year−1), as were the corresponding rates of organic matter accumulation (8.9–9.5 mol C m−2 year−1) at all three sites. Dissolved sulfate penetrated 2 mmol L−1 below the sulfate–methane transition. A steep gradient of methane through the entire sulfate zone led to upward (diffusive and bio-irrigative) fluxes of 0.32 to 0.78 mol m−2 year−1 methane to the sediment–water interface. Areal rates of sulfate reduction (1.46–1.92 mol m−2 year−1) integrated over the upper 0–14 cm of sediment appeared to be limited by the restricted diffusive supply of sulfate, low bio-irrigation (α = 2.8–3.1 year−1), and limited residence time of the sedimentary organic carbon in the sulfate zone. A large fraction of reduced sulfur as pyrite and organic-bound sulfur was buried and thus escaped reoxidation in the surface sediment. The presence of ferrous iron in the pore water (with concentrations up to 110 μM) suggests that iron reduction plays an important role in surface sediments, as well as in sediment layers deep below the sulfate–methane transition. We conclude that high rates of sediment accumulation and shallow sulfate penetration are the master variables for biogeochemistry of methane and sulfur cycling; in particular, they may significantly allow for release of methane into the water column in the Himmerfjärden estuary
    corecore