161 research outputs found

    Innovations in pneumonia diagnosis and treatment: a call to action on World Pneumonia Day, 2013

    Get PDF

    Prevention of neonatal pneumonia and sepsis via maternal immunisation

    Get PDF

    Multicentre pilot study evaluation of lung ultrasound for the management of paediatric pneumonia in low-resource settings: a study protocol

    Get PDF
    Introduction: Pneumonia is the leading infectious cause of death among children under 5 years of age worldwide. However, pneumonia is challenging to diagnose. Lung ultrasound (LUS) is a promising diagnostic technology. Further evidence is needed to better understand the role of LUS as a tool for the diagnosis of childhood pneumonia in low-resource settings. Methods and analysis: This study aims to pilot LUS in Mozambique and Pakistan and to generate evidence regarding the use of LUS as a diagnostic tool for childhood pneumonia. Children with cough \u3c14 days with chest indrawing (n=230) and without chest indrawing (n=40) are enrolled. World Health Organization Integrated Management of Childhood Illness assessment is performed at enrolment, along with a chest radiograph and LUS examination. Respiratory and blood specimens are collected for viral and bacterial testing and biomarker assessment. Enrolled children are followed for 14 days (in person) and 30 days (phone call) post-enrolment with LUS examinations performed on Days 2, 6 and 14. Qualitative and quantitative data are also collected to assess feasibility, usability and acceptability of LUS among healthcare providers and caregivers. The primary outcome is LUS findings at enrolment with secondary outcomes including patient outcomes, repeat LUS findings, viral and bacterial test results, and patient status after 14 and 30 days of follow-up. Ethics and dissemination: This trial was approved by the Western Institutional Review Board as well as local ethics review committees at each site. We plan to disseminate study results in peer-reviewed journals and international conferences. Trial registration number: NCT03187067

    Deficiency of plasminogen activator inhibitor‐2 results in accelerated tumor growth

    Full text link
    BackgroundUpregulation of the plasminogen activation system, including urokinase plasminogen activator (uPA), has been observed in many malignancies, suggesting that co‐opting the PA system is a common method by which tumor cells accomplish extracellular matrix proteolysis. PAI‐2, a serine protease inhibitor, produced from the SERPINB2 gene, inhibits circulating and extracellular matrix‐tethered uPA. Decreased SERPINB2 expression has been associated with increased tumor invasiveness and metastasis for several types of cancer. PAI‐2 deficiency has not been reported in humans and PAI‐2‐deficient (SerpinB2−/−) mice exhibit no apparent abnormalities.ObjectivesWe investigated the role of PAI‐2 deficiency on tumor growth and metastasis.MethodsTo explore the long‐term impact of PAI‐2 deficiency, a cohort of SerpinB2−/− mice were aged to >18 months, with spontaneous malignancies observed in 4/9 animals, all of apparently vascular origin. To further investigate the role of PAI‐2 deficiency in malignancy, SerpinB2−/− and wild‐type control mice were injected with either B16 melanoma or Lewis lung carcinoma tumor cells, with markedly accelerated tumor growth observed in SerpinB2−/− mice for both cell lines. To determine the relative contributions of PAI‐2 from hematopoietic or nonhematopoietically derived sources, bone marrow transplants between wild‐type C57BL/6J and SerpinB2−/− mice were performed.Results and ConclusionsOur results suggest that PAI‐2 deficiency increases susceptibility to spontaneous tumorigenesis in the mouse, and demonstrate that SerpinB2 expression derived from a nonhematopoietic compartment is a key host factor in the regulation of tumor growth in both the B16 melanoma and Lewis lung carcinoma models.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163438/2/jth15054_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163438/1/jth15054.pd

    Evaluation of Sibel’s Advanced Neonatal Epidermal (ANNE) wireless continuous physiological monitor in Nairobi, Kenya

    Get PDF
    Background: Neonatal multiparameter continuous physiological monitoring (MCPM) technologies assist with early detection of preventable and treatable causes of neonatal mortality. Evaluating accuracy of novel MCPM technologies is critical for their appropriate use and adoption. Methods: We prospectively compared the accuracy of Sibel’s Advanced Neonatal Epidermal (ANNE) technology with Masimo’s Rad-97 pulse CO-oximeter with capnography and Spengler’s Tempo Easy reference technologies during four evaluation rounds. We compared accuracy of heart rate (HR), respiratory rate (RR), oxygen saturation (SpO2), and skin temperature using Bland-Altman plots and root-mean-square deviation analyses (RMSD). Sibel’s ANNE algorithms were optimized between each round. We created Clarke error grids with zones of 20% to aid with clinical interpretation of HR and RR results. Results: Between November 2019 and August 2020 we collected 320 hours of data from 84 neonates. In the final round, Sibel’s ANNE technology demonstrated a normalized bias of 0% for HR and 3.1% for RR, and a non-normalized bias of -0.3% for SpO2 and 0.2°C for temperature. The normalized spread between 95% upper and lower limits-of-agreement (LOA) was 4.7% for HR and 29.3% for RR. RMSD for SpO2 was 1.9% and 1.5°C for temperature. Agreement between Sibel’s ANNE technology and the reference technologies met the a priori-defined thresholds for 95% spread of LOA and RMSD. Clarke error grids showed that all HR and RR observations were within a 20% difference. Conclusion: Our findings suggest acceptable agreement between Sibel’s ANNE and reference technologies. Clinical effectiveness, feasibility, usability, acceptability, and cost-effectiveness investigations are necessary for large-scale implementation

    Evaluation of non-invasive continuous physiological monitoring devices for neonates in Nairobi, Kenya: a research protocol

    Get PDF
    Introduction: Continuous physiological monitoring devices are often not available for monitoring high-risk neonates in low-resource settings. Easy-to-use, non-invasive, multiparameter, continuous physiological monitoring devices could be instrumental in providing appropriate care and improving outcomes for high-risk neonates in these low-resource settings. Methods and analysis: The purpose of this prospective, observational, facility-based evaluation is to provide evidence to establish whether two existing non-invasive, multiparameter, continuous physiological monitoring devices developed by device developers, EarlySense and Sibel, can accurately and reliably measure vital signs in neonates (when compared with verified reference devices). We will also assess the feasibility, usability and acceptability of these devices for use in neonates in low-resource settings in Africa. Up to 500 neonates are enrolled in two phases: (1) a verification and accuracy evaluation phase at Aga Khan University—Nairobi and (2) a clinical feasibility evaluation phase at Pumwani Maternity Hospital in Nairobi, Kenya. Both quantitative and qualitative data are collected and analysed. Agreement between the investigational and reference devices is determined using a priori-defined accuracy thresholds. Ethics and dissemination: This trial was approved by the Aga Khan University Nairobi Research Ethics Committee and the Western Institutional Review Board. We plan to disseminate research results in peer-reviewed journals and international conferences

    Assessment of neonatal respiratory rate variability

    Get PDF
    Accurate measurement of respiratory rate (RR) in neonates is challenging due to high neonatal RR variability (RRV). There is growing evidence that RRV measurement could inform and guide neonatal care. We sought to quantify neonatal RRV during a clinical study in which we compared multiparameter continuous physiological monitoring (MCPM) devices. Measurements of capnography-recorded exhaled carbon dioxide across 60-s epochs were collected from neonates admitted to the neonatal unit at Aga Khan University-Nairobi hospital. Breaths were manually counted from capnograms and using an automated signal detection algorithm which also calculated mean and median RR for each epoch. Outcome measures were between- and within-neonate RRV, between- and within-epoch RRV, and 95% limits of agreement, bias, and root-mean-square deviation. Twenty-seven neonates were included, with 130 epochs analysed. Mean manual breath count (MBC) was 48 breaths per minute. Median RRV ranged from 11.5% (interquartile range (IQR) 6.8–18.9%) to 28.1% (IQR 23.5–36.7%). Bias and limits of agreement for MBC vs algorithm-derived breath count, MBC vs algorithm-derived median breath rate, MBC vs algorithm-derived mean breath rate were − 0.5 (− 2.7, 1.66), − 3.16 (− 12.12, 5.8), and − 3.99 (− 11.3, 3.32), respectively. The marked RRV highlights the challenge of performing accurate RR measurements in neonates. More research is required to optimize the use of RRV to improve care. When evaluating MCPM devices, accuracy thresholds should be less stringent in newborns due to increased RRV. Lastly, median RR, which discounts the impact of extreme outliers, may be more reflective of the underlying physiological control of breathing
    corecore