21 research outputs found

    Everybody Dance Now

    Full text link
    This paper presents a simple method for "do as I do" motion transfer: given a source video of a person dancing, we can transfer that performance to a novel (amateur) target after only a few minutes of the target subject performing standard moves. We approach this problem as video-to-video translation using pose as an intermediate representation. To transfer the motion, we extract poses from the source subject and apply the learned pose-to-appearance mapping to generate the target subject. We predict two consecutive frames for temporally coherent video results and introduce a separate pipeline for realistic face synthesis. Although our method is quite simple, it produces surprisingly compelling results (see video). This motivates us to also provide a forensics tool for reliable synthetic content detection, which is able to distinguish videos synthesized by our system from real data. In addition, we release a first-of-its-kind open-source dataset of videos that can be legally used for training and motion transfer.Comment: In ICCV 201

    Can Language Models Learn to Listen?

    Full text link
    We present a framework for generating appropriate facial responses from a listener in dyadic social interactions based on the speaker's words. Given an input transcription of the speaker's words with their timestamps, our approach autoregressively predicts a response of a listener: a sequence of listener facial gestures, quantized using a VQ-VAE. Since gesture is a language component, we propose treating the quantized atomic motion elements as additional language token inputs to a transformer-based large language model. Initializing our transformer with the weights of a language model pre-trained only on text results in significantly higher quality listener responses than training a transformer from scratch. We show that our generated listener motion is fluent and reflective of language semantics through quantitative metrics and a qualitative user study. In our evaluation, we analyze the model's ability to utilize temporal and semantic aspects of spoken text. Project page: https://people.eecs.berkeley.edu/~evonne_ng/projects/text2listen/Comment: ICCV 2023; Project page: https://people.eecs.berkeley.edu/~evonne_ng/projects/text2listen

    Temporally Guided Music-to-Body-Movement Generation

    Full text link
    This paper presents a neural network model to generate virtual violinist's 3-D skeleton movements from music audio. Improved from the conventional recurrent neural network models for generating 2-D skeleton data in previous works, the proposed model incorporates an encoder-decoder architecture, as well as the self-attention mechanism to model the complicated dynamics in body movement sequences. To facilitate the optimization of self-attention model, beat tracking is applied to determine effective sizes and boundaries of the training examples. The decoder is accompanied with a refining network and a bowing attack inference mechanism to emphasize the right-hand behavior and bowing attack timing. Both objective and subjective evaluations reveal that the proposed model outperforms the state-of-the-art methods. To the best of our knowledge, this work represents the first attempt to generate 3-D violinists' body movements considering key features in musical body movement
    corecore