91 research outputs found

    New insight on pseudospin doublets in nuclei

    Full text link
    The relevance of the pseudospin symmetry in nuclei is considered. New insight is obtained from looking at the continuous transition from a model satisfying the spin symmetry to another one satisfying the pseudospin symmetry. This study suggests that there are models allowing no missing single-particle states in this transition, contrary to what is usually advocated. It rather points out to an association of pseudospin partners different from the one usually assumed, together with a strong violation of the corresponding symmetry. A comparison with results obtained from some relativistic approaches is made.Comment: 27 pages, 18 figure

    Role of the Coulomb and the vector-isovector ρ\rho potentials in the isospin asymmetry of nuclear pseudospin

    Full text link
    We investigate the role of the Coulomb and the vector-isovector ρ\rho potentials in the asymmetry of the neutron and proton pseudospin splittings in nuclei. To this end, we solve the Dirac equation for the nucleons using central vector and scalar potentials with Woods-Saxon shape and ZZ and NZN-Z dependent Coulomb and ρ\rho potentials added to the vector potential. We study the effect of these potentials on the energy splittings of proton and neutron pseudospin partners along a Sn isotopic chain. We use an energy decomposition proposed in a previous work to assess the effect of a pseudospin-orbit potential on those splittings. We conclude that the effect of the Coulomb potential is quite small and the ρ\rho potential gives the main contribution to the observed isospin asymmetry of the pseudospin splittings. This isospin asymmetry results from a cancellation of the various energy terms and cannot be attributed only to the pseudospin-orbit term, confirming the dynamical character of this symmetry pointed out in previous works.Comment: 9 pages, 11 figures, uses revtex4; title was changed and several small corrections were made throughout the tex

    Pseudospin symmetry as a relativistic dynamical symmetry in the nucleus

    Get PDF
    Pseudospin symmetry in nuclei is investigated by solving the Dirac equation with Woods-Saxon scalar and vector radial potentials, and studying the correlation of the energy splittings of pseudospin partners with the nuclear potential parameters. The pseudospin interaction is related to a pseudospin-orbit term that arises in a Schroedinger-like equation for the lower component of the Dirac spinor. We show that the contribution from this term to the energy splittings of pseudospin partners is large. The near pseudospin degeneracy results from a significant cancelation among the different terms in that equation, manifesting the dynamical character of this symmetry in the nucleus. We analyze the isospin dependence of the pseudospin symmetry and find that its dynamical character is behind the different pseudospin splittings observed in neutron and proton spectra of nuclei.Comment: 13 pages, 9 figures, uses REVTeX4 macro

    Algebraic-eikonal approach to medium energy proton scattering from odd-mass nuclei

    Get PDF
    We extend the algebraic-eikonal approach to medium energy proton scattering from odd-mass nuclei by combining the eikonal approximation for the scattering with a description of odd-mass nuclei in terms of the interacting boson-fermion model. We derive closed expressions for the transition matrix elements for one of the dynamical symmetries and discuss the interplay between collective and single-particle degrees of freedom in an application to elastic and inelastic proton scattering from 195^{195}Pt.Comment: latex, 14 pages, 4 figures uuencoded, to be published in Physical Review

    Relativistic study of the energy-dependent Coulomb potential including Coulomb-like tensor interaction

    Full text link
    The exact Dirac equation for the energy-dependent Coulomb (EDC) potential including a Coulomb-like tensor (CLT) potential has been studied in the presence of spin and pseudospin (p-spin) symmetries with arbitrary spin-orbit quantum number The energy eigenvalues and corresponding eigenfunctions are obtained in the framework of asymptotic iteration method (AIM). Some numerical results are obtained in the presence and absence of EDC and CLT potentials.Comment: 13 pages, to appear in Canadian Journal of Physics (2012

    F-spin as a Partial Symmetry

    Get PDF
    We use the empirical evidence that F-spin multiplets exist in nuclei for only selected states as an indication that F-spin can be regarded as a partial symmetry. We show that there is a class of non-F-scalar IBM-2 Hamiltonians with partial F-spin symmetry, which reproduce the known systematics of collective bands in nuclei. These Hamiltonians predict that the scissors states have good F-spin and form F-spin multiplets, which is supported by the existing data.Comment: 14 pages, 1 figur

    Bound state solutions of the Dirac-Rosen-Morse potential with spin and pseudospin symmetry

    Full text link
    The energy spectra and the corresponding two- component spinor wavefunctions of the Dirac equation for the Rosen-Morse potential with spin and pseudospin symmetry are obtained. The ss-wave (κ=0\kappa = 0 state) solutions for this problem are obtained by using the basic concept of the supersymmetric quantum mechanics approach and function analysis (standard approach) in the calculations. Under the spin symmetry and pseudospin symmetry, the energy equation and the corresponding two-component spinor wavefunctions for this potential and other special types of this potential are obtained. Extension of this result to κ0\kappa \neq 0 state is suggested.Comment: 18 page

    Generator Coordinate Truncations

    Get PDF
    We investigate the accuracy of several schemes to calculate ground-state correlation energies using the generator coordinate technique. Our test-bed for the study is the sdsd interacting boson model, equivalent to a 6-level Lipkin-type model. We find that the simplified projection of a triaxial generator coordinate state using the S3S_3 subgroup of the rotation group is not very accurate in the parameter space of the Hamiltonian of interest. On the other hand, a full rotational projection of an axial generator coordinate state gives remarkable accuracy. We also discuss the validity of the simplified treatment using the extended Gaussian overlap approximation (top-GOA), and show that it works reasonably well when the number of boson is four or larger.Comment: 19 pages, 6 eps figure

    New Eaxactly Solvable Hamiltonians: Shape Invariance and Self-Similarity

    Get PDF
    We discuss in some detail the self-similar potentials of Shabat and Spiridonov which are reflectionless and have an infinite number of bound states. We demonstrate that these self-similar potentials are in fact shape invariant potentials within the formalism of supersymmetric quantum mechanics. In particular, using a scaling ansatz for the change of parameters, we obtain a large class of new, reflectionless, shape invariant potentials of which the Shabat-Spiridonov ones are a special case. These new potentials can be viewed as q-deformations of the single soliton solution corresponding to the Rosen-Morse potential. Explicit expressions for the energy eigenvalues, eigenfunctions and transmission coefficients for these potentials are obtained. We show that these potentials can also be obtained numerically. Included as an intriguing case is a shape invariant double well potential whose supersymmetric partner potential is only a single well. Our class of exactly solvable Hamiltonians is further enlarged by examining two new directions: (i) changes of parameters which are different from the previously studied cases of translation and scaling; (ii) extending the usual concept of shape invariance in one step to a multi-step situation. These extensions can be viewed as q-deformations of the harmonic oscillator or multi-soliton solutions corresponding to the Rosen-Morse potential.Comment: 26 pages, plain tex, request figures by e-mai
    corecore