15 research outputs found

    Phenolic compound profiles in selected Queensland red wines at all stages of the wine-making process

    No full text
    The phenolic profiles of Queensland red wines (two Cabernet Sauvignons and one Shiraz) from different stages of wine-making were studied. Samples were taken at crush, after the primary and malolactic fermentations, post-oaking, and post-bottling, and then extracted and separated into aqueous and organic fractions using liquid liquid extraction and solid-phase extraction, and analysed by HPLC-DAD-MS. About 75% of the phenolic compounds were extracted into the aqueous fraction, with malvidin-3-glucoside and derivatives as the main components. The major non-anthocyanin phenolic compounds (similar to 25%) included gallic acid, syringic acid, ethyl gallate, caftaric acid, coutaric acid, caffeic acid, coumaric acid, catechin, and quercetin. The polymerisation of anthocyanins was shown to occur progressively throughout the wine-making process. Most of the 25 identified phenolic compounds had highest concentrations during the fermentation stage, and stabilised or slowly decreased thereafter. There were weak and insignificant correlations (P > 0.05) between individual phenolic compounds and the total antioxidant activities (ORAC). Four groups of phenolic compounds (anthocyanins, hydroxybenzoic acids, flavanols and hydroxycinnamic acids) each showed some correlation with the total antioxidant activity, as did the total polyphenol content, suggesting that the antioxidant properties of red wine are due to a complex mixture of phenolic compounds that vary in composition throughout the wine-making process. (C) 2010 Elsevier Ltd. All rights reserved

    {}

    No full text

    Phenolic composition of monovarietal red wines regarding volatile phenols and its precursors

    No full text
    The aim of this study was to characterise and compare wines from different grape varieties focusing on the volatile phenols and on the respective precursor compounds, both on the free form (p-coumaric, ferulic and caffeic acids) and as tartaric esters of hydroxycinnamic acids (caftaric, coutaric and fertaric acids). Fifty-eight commercial monovarietal red wines from eight selected grape varieties were used: Cabernet Sauvignon, Syrah, Aragonez, Castelão, Touriga Franca, Touriga Nacional, Trincadeira and Vinhão (Sousão). It was found that volatile phenol precursors exist mostly as esters of tartaric acid, with caftaric acid as the most abundant cinnamate (17–111 mg/L), followed by coutaric and fertaric acids. The predominant hydroxycinnamic acid was p-coumaric acid, the highest concentrations being found in Syrah and Touriga Franca (6–7 mg/L) and the lowest in Touriga Nacional and Trincadeira (2–3 mg/L). Touriga Nacional exhibits the highest difference between bound and free forms. Malvidin-3-O-(6-p-coumaroyl)-glucoside, a potential source of p-coumaric acid, was found in most of the wines with average values varying between 1 and 5 mg/L. Twenty-two percent of the wines analysed presented levels of volatile phenols above the perception threshold. Ethylphenols were the highest in Vinhão and Trincadeira, showing an average value well above the perception threshold. The concentrations found in Cabernet Sauvignon and Syrah wines were around ten times lower than those reported in previous works. The results show relevant differences among grape varieties but the availability of the precursors in meaningful amounts may not be the only factor explaining the formation of volatile phenols in wines.info:eu-repo/semantics/publishedVersio
    corecore