6 research outputs found

    Longitudinal Behavior of Left-Ventricular Strain in Fetal Growth Restriction

    Get PDF
    Fetal growth restriction (FGR) is associated with an increased risk of adverse outcomes resulting from adaptive cardiovascular changes in conditions of placental insufficiency, leading to cardiac deformation and dysfunction, which can be evaluated with 2D speckle tracking echocardiography (2D-STE). The aim of the present study was to evaluate whether reduced fetal growth is associated with cardiac left-ventricle (LV) dysfunction, using 2D-STE software widely used in postnatal echocardiography. A prospective longitudinal cohort study was performed, and global (GLO) and segmental LV longitudinal strain was measured offline and compared between FGR and appropriate-for-gestational-age (AGA) fetuses throughout gestation. All cases of FGR fetuses were paired 1:2 to AGA fetuses, and linear mixed model analysis was performed to compare behavior differences between groups throughout pregnancy. Our study shows LV fetal longitudinal strain in FGR and AGA fetuses differed upon diagnosis and behaved differently throughout gestation. FGR fetuses had lower LV strain values, both global and segmental, in comparison to AGA, suggesting subclinical cardiac dysfunction. Our study provides more data regarding fetal cardiac function in cases of placental dysfunction, as well as highlights the potential use of 2D-STE in the follow-up of cardiac function in these fetuses

    Fetal Left Ventricle Function Evaluated by Two-Dimensional Speckle-Tracking Echocardiography across Clinical Stages of Severity in Growth-Restricted Fetuses

    No full text
    Fetal growth restriction (FGR) can result in adverse perinatal outcomes due to cardiac dysfunction. This study used 2D speckle-tracking echocardiography to assess left ventricle (LV) longitudinal strain across FGR severity stages. A prospective longitudinal cohort study measured global (GLS) and segmental LV longitudinal strain in FGR fetuses, with evaluations conducted at various time points. FGR was classified into subtypes based on published criteria using fetal weight centile and Doppler parameters. A linear mixed model was employed to analyze repeated measures and compare Z-score measurements between groups throughout gestational age. The study included 40 FGR fetuses and a total of 107 evaluations were performed: 21 from small for gestational age (SGA), 74 from the FGR stage I, and 12 from the FGR stage ≥ II. The results indicate that SGA and stage I FGR fetuses exhibit higher LV GLS than stages ≥ II. Throughout gestation, SGA and FGR stage I fetuses showed similar behavior with consistently better LV GLS values when compared to FGR stages ≥ II. No significant differences were observed in LV GLS strain behavior between SGA and FGR stage I. In conclusion, all FGRs show signs of early cardiac dysfunction, with severe cases demonstrating significantly a lower LV GLS when compared to mild cases, suggesting deterioration of cardiac dysfunction with progression of fetal compromise

    Comparison of dose calculation algorithms in slab phantoms with cortical bone equivalent heterogeneities

    No full text
    To evaluate the dose values predicted by several calculation algorithms in two treatment planning systems, Monte Carlo (MC) simulations and measurements by means of various detectors were performed in heterogeneous layer phantoms with water- and bone-equivalent materials. Percentage depth doses (PDDs) were measured with thermoluminescent dosimeters (TLDs), metal-oxide semiconductor field-effect transistors (MOSFETs), plane parallel and cylindrical ionization chambers, and beam profiles with films. The MC code used for the simulations was the PENELOPE code. Three different field sizes (10 X 10, 5 X 5, and 2 X 2 cm 2) were studied in two phantom configurations and a bone equivalent material. These two phantom configurations contained heterogeneities of 5 and 2 cm of bone, respectively. We analyzed the performance of four correction-based algorithms and one based on convolution superposition. The correction-based algorithms were the Batho, the Modified Batho, the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system (TPS), and the Helax-TMS Pencil Beam from the Helax-TMS (Nucletron) TPS. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. All the correction-based calculation algorithms underestimated the dose inside the bone-equivalent material for 18 MV compared to MC simulations. The maximum underestimation, in terms of root-mean-square (RMS), was about 15% for the Helax-TMS Pencil Beam (Helax-TMS PB) for a 2 X 2 cm2 field inside the bone-equivalent material. In contrast, the Collapsed Cone algorithm yielded values around 3%. A more complex behavior was found for 6 MV where the Collapsed Cone performed less well, overestimating the dose inside the heterogeneity in 3%-5%. The rebuildup in the interface bone-water and the penumbra shrinking in high-density media were not predicted by any of the calculation algorithms except the Collapsed Cone, and only the MC simulations matched the experimental values within the estimated uncertainties. The TLD and MOSFET detectors were suitable for dose measurement inside bone-equivalent materials, while parallel ionization chambers, applying the same calibration and correction factors as in water, systematically underestimated dose by 3%-5%. (c) 2007 American Association of Physicists in Medicine

    Longitudinal Behavior of Left-Ventricular Strain in Fetal Growth Restriction

    No full text
    Fetal growth restriction (FGR) is associated with an increased risk of adverse outcomes resulting from adaptive cardiovascular changes in conditions of placental insufficiency, leading to cardiac deformation and dysfunction, which can be evaluated with 2D speckle tracking echocardiography (2D-STE). The aim of the present study was to evaluate whether reduced fetal growth is associated with cardiac left-ventricle (LV) dysfunction, using 2D-STE software widely used in postnatal echocardiography. A prospective longitudinal cohort study was performed, and global (GLO) and segmental LV longitudinal strain was measured offline and compared between FGR and appropriate-for-gestational-age (AGA) fetuses throughout gestation. All cases of FGR fetuses were paired 1:2 to AGA fetuses, and linear mixed model analysis was performed to compare behavior differences between groups throughout pregnancy. Our study shows LV fetal longitudinal strain in FGR and AGA fetuses differed upon diagnosis and behaved differently throughout gestation. FGR fetuses had lower LV strain values, both global and segmental, in comparison to AGA, suggesting subclinical cardiac dysfunction. Our study provides more data regarding fetal cardiac function in cases of placental dysfunction, as well as highlights the potential use of 2D-STE in the follow-up of cardiac function in these fetuses

    Reduction in Preterm Preeclampsia after Contingent First-Trimester Screening and Aspirin Prophylaxis in a Routine Care Setting

    Get PDF
    Objectives: Several multivariate algorithms for preeclampsia (PE) screening in the first trimester have been developed over the past few years. These models include maternal factors, mean arterial pressure (MAP), uterine artery Doppler (UtA-PI), and biochemical markers (pregnancy-associated plasma protein-A (PAPP-A) or placental growth factor (PlGF)). Treatment with low-dose aspirin (LDA) has shown a reduction in the incidence of preterm PE in women with a high-risk assessment in the first trimester. An important barrier to the implementation of first-trimester screening is the cost of performing tests for biochemical markers in the whole population. Theoretical contingent strategies suggest that two-stage screening models could also achieve high detection rates for preterm PE with lower costs. However, no data derived from routine care settings are currently available. This study was conducted to validate and assess the performance of a first-trimester contingent screening process using PlGF for PE, with prophylactic LDA, for decreasing the incidence of preterm PE. Methods: This was a two-phase study. In phase one, a contingent screening model for PE was developed using a multivariate validated model and a historical cohort participating in a non-interventional PE screening study (n = 525). First-stage risk assessment included maternal factors, MAP, UtA-PI, and PAPP-A. Several cut-off levels were tested to determine the best screening performance, and three groups were then defined (high-, medium-, and low-risk groups). PlGF was determined in the medium-risk group to calculate the final risk. Phase two included a validation cohort of 847 singleton pregnancies prospectively undergoing first-trimester PE screening using this approach. Women at high risk of PE received prophylactic treatment with 150 mg of LDA. The clinical impact of the model was evaluated by comparing the incidence of early-onset (<34 weeks) and preterm (<37 weeks) PE between groups. Results: Cut-off levels for the contingent screening model were chosen in the first and second stages of screening to achieve a performance with sensitivities of 100% and 80% for early-onset and preterm PE detection, respectively, with a 15% false positive rate. In the development phase, 21.5% (n = 113) of the women had a medium risk of PE and required second-stage screening. In the prospective validation phase, 15.3% (n = 130) of the women required second-stage screening for PlGF, yielding an overall screen-positive rate of 14.9% (n = 126). The incidence of preterm PE was reduced by 68.4% (1.9% vs. 0.6%, p = 0.031) after one year of screening implementation. Conclusions: Implementation of contingent screening for PE using PlGF in a routine care setting led to a significant reduction (68.4%) in preterm PE, suggesting that contingent screening can achieve similar results to protocols using PlGF in the whole population. This could have financial benefits, with a similar reduction in the rate of preterm PE

    Fetal Left Ventricle Function Evaluated by Two-Dimensional Speckle-Tracking Echocardiography across Clinical Stages of Severity in Growth-Restricted Fetuses

    No full text
    Fetal growth restriction (FGR) can result in adverse perinatal outcomes due to cardiac dysfunction. This study used 2D speckle-tracking echocardiography to assess left ventricle (LV) longitudinal strain across FGR severity stages. A prospective longitudinal cohort study measured global (GLS) and segmental LV longitudinal strain in FGR fetuses, with evaluations conducted at various time points. FGR was classified into subtypes based on published criteria using fetal weight centile and Doppler parameters. A linear mixed model was employed to analyze repeated measures and compare Z-score measurements between groups throughout gestational age. The study included 40 FGR fetuses and a total of 107 evaluations were performed: 21 from small for gestational age (SGA), 74 from the FGR stage I, and 12 from the FGR stage ≥ II. The results indicate that SGA and stage I FGR fetuses exhibit higher LV GLS than stages ≥ II. Throughout gestation, SGA and FGR stage I fetuses showed similar behavior with consistently better LV GLS values when compared to FGR stages ≥ II. No significant differences were observed in LV GLS strain behavior between SGA and FGR stage I. In conclusion, all FGRs show signs of early cardiac dysfunction, with severe cases demonstrating significantly a lower LV GLS when compared to mild cases, suggesting deterioration of cardiac dysfunction with progression of fetal compromise
    corecore