504 research outputs found

    Determining robot actions for tasks requiring sensor interaction

    Get PDF
    The performance of non-trivial tasks by a mobile robot has been a long term objective of robotic research. One of the major stumbling blocks to this goal is the conversion of the high-level planning goals and commands into the actuator and sensor processing controls. In order for a mobile robot to accomplish a non-trivial task, the task must be described in terms of primitive actions of the robot's actuators. Most non-trivial tasks require the robot to interact with its environment; thus necessitating coordination of sensor processing and actuator control to accomplish the task. The main contention is that the transformation from the high level description of the task to the primitive actions should be performed primarily at execution time, when knowledge about the environment can be obtained through sensors. It is proposed to produce the detailed plan of primitive actions by using a collection of low-level planning components that contain domain specific knowledge and knowledge about the available sensors, actuators, and sensor/actuator processing. This collection will perform signal and control processing as well as serve as a control interface between an actual mobile robot and a high-level planning system. Previous research has shown the usefulness of high-level planning systems to plan the coordination of activities such to achieve a goal, but none have been fully applied to actual mobile robots due to the complexity of interacting with sensors and actuators. This control interface is currently being implemented on a LABMATE mobile robot connected to a SUN workstation and will be developed such to enable the LABMATE to perform non-trivial, sensor-intensive tasks as specified by a planning system

    Semiparametric CRB and Slepian-Bangs formulas for Complex Elliptically Symmetric Distributions

    Full text link
    The main aim of this paper is to extend the semiparametric inference methodology, recently investigated for Real Elliptically Symmetric (RES) distributions, to Complex Elliptically Symmetric (CES) distributions. The generalization to the complex field is of fundamental importance in all practical applications that exploit the complex representation of the acquired data. Moreover, the CES distributions has been widely recognized as a valuable and general model to statistically describe the non-Gaussian behaviour of datasets originated from a wide variety of physical measurement processes. The paper is divided in two parts. In the first part, a closed form expression of the constrained Semiparametric Cram\'{e}r-Rao Bound (CSCRB) for the joint estimation of complex mean vector and complex scatter matrix of a set of CES-distributed random vectors is obtained by exploiting the so-called \textit{Wirtinger} or CR\mathbb{C}\mathbb{R}-\textit{calculus}. The second part deals with the derivation of the semiparametric version of the Slepian-Bangs formula in the context of the CES model. Specifically, the proposed Semiparametric Slepian-Bangs (SSB) formula provides us with a useful and ready-to-use expression of the Semiparametric Fisher Information Matrix (SFIM) for the estimation of a parameter vector parametrizing the complex mean and the complex scatter matrix of a CES-distributed vector in the presence of unknown, nuisance, density generator. Furthermore, we show how to exploit the derived SSB formula to obtain the semiparametric counterpart of the Stochastic CRB for Direction of Arrival (DOA) estimation under a random signal model assumption. Simulation results are also provided to clarify the theoretical findings and to demonstrate their usefulness in common array processing applications.Comment: Submitted to IEEE Transactions on Signal Processing. arXiv admin note: substantial text overlap with arXiv:1807.08505, arXiv:1807.0893

    Exploring decision processes in multi-agent automated contracting

    Full text link
    We are interested in the problem of multi-agent contracting, in which customers must solicit the resources and capabilities of other, self-interested agents in order to accomplish their goals. Goals may involve the execution of multi-step plans, in which different steps are contracted out to different suppliers. We have focused on decision criteria for composing requests for quotations, managing the bidding process, evaluating bids, and monitoring plan execution. We have developed a testbed that allows us to study these decision behaviors. It can generate sets of plans with known statistical attributes, formulate and submit requests for quotations, generate bids with well-defined statistics, and evaluate those bids according to a number of criteria. Each of these processes is supported by an abstract interface and a series of pluggable modules with a large number of configuration parameters. Data collection and analysis tools round out the package. We will demonstrate how to take statistics from a real application domain, apply them to the simulation, and test a variety of bid-management and bid-evaluation procedures against them

    Copolar Calibration of Multistatic Radar in the Presence of Multipath

    Get PDF
    This paper addresses the Polarimetrie calibration of the nodes of a multistatic radar system, by using a reference object with known scattering matrix, such as a metallic sphere. A calibration technique is proposed and its experimental validation performed in a realistic scenario, by accounting also for the multipath effect. The intensity of the signal scattered by a metallic sphere and received by the monostatic and bistatic nodes of the NetRAD system is measured, by varying the antenna height, the object range and the bistatic angle. The adopted calibration technique shows a quite good accuracy, as the calibrated values of the radar cross section of the reference object are close to the theoretical ones, after the compensation of the multipath effect

    Semiparametric Inference and Lower Bounds for Real Elliptically Symmetric Distributions

    Full text link
    This paper has a twofold goal. The first aim is to provide a deeper understanding of the family of the Real Elliptically Symmetric (RES) distributions by investigating their intrinsic semiparametric nature. The second aim is to derive a semiparametric lower bound for the estimation of the parametric component of the model. The RES distributions represent a semiparametric model where the parametric part is given by the mean vector and by the scatter matrix while the non-parametric, infinite-dimensional, part is represented by the density generator. Since, in practical applications, we are often interested only in the estimation of the parametric component, the density generator can be considered as nuisance. The first part of the paper is dedicated to conveniently place the RES distributions in the framework of the semiparametric group models. The second part of the paper, building on the mathematical tools previously introduced, the Constrained Semiparametric Cram\'{e}r-Rao Bound (CSCRB) for the estimation of the mean vector and of the constrained scatter matrix of a RES distributed random vector is introduced. The CSCRB provides a lower bound on the Mean Squared Error (MSE) of any robust MM-estimator of mean vector and scatter matrix when no a-priori information on the density generator is available. A closed form expression for the CSCRB is derived. Finally, in simulations, we assess the statistical efficiency of the Tyler's and Huber's scatter matrix MM-estimators with respect to the CSCRB.Comment: This paper has been accepted for publication in IEEE Transactions on Signal Processin
    • …
    corecore