33 research outputs found

    Domain regime in two-dimensional disordered vortex matter

    Full text link
    A detailed numerical study of the real space configuration of vortices in disordered superconductors using 2D London-Langevin model is presented. The magnetic field BB is varied between 0 and Bc2B_{c2} for various pinning strengths Δ\Delta. For weak pinning, an inhomogeneous disordered vortex matter is observed, in which the topologically ordered vortex lattice survives in large domains. The majority of the dislocations in this state are confined to the grain boundaries/domain walls. Such quasi-ordered configurations are observed in the intermediate fields, and we refer it as the domain regime (DR). The DR is distinct from the low-field and the high-fields amorphous regimes which are characterized by a homogeneous distribution of defects over the entire system. Analysis of the real space configuration suggests domain wall roughening as a possible mechanism for the crossover from the DR to the high-field amorphous regime. The DR also shows a sharp crossover to the high temperature vortex liquid phase. The domain size distribution and the roughness exponent of the lattice in the DR are also calculated. The results are compared with some of the recent Bitter decoration experiments.Comment: 9 pages, 9 figure

    Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO

    Full text link
    Liquid xenon time projection chambers are promising detectors to search for neutrinoless double beta decay (0νββ\nu \beta \beta), due to their response uniformity, monolithic sensitive volume, scalability to large target masses, and suitability for extremely low background operations. The nEXO collaboration has designed a tonne-scale time projection chamber that aims to search for 0νββ\nu \beta \beta of \ce{^{136}Xe} with projected half-life sensitivity of 1.35×10281.35\times 10^{28}~yr. To reach this sensitivity, the design goal for nEXO is ≤\leq1\% energy resolution at the decay QQ-value (2458.07±0.312458.07\pm 0.31~keV). Reaching this resolution requires the efficient collection of both the ionization and scintillation produced in the detector. The nEXO design employs Silicon Photo-Multipliers (SiPMs) to detect the vacuum ultra-violet, 175 nm scintillation light of liquid xenon. This paper reports on the characterization of the newest vacuum ultra-violet sensitive Fondazione Bruno Kessler VUVHD3 SiPMs specifically designed for nEXO, as well as new measurements on new test samples of previously characterised Hamamatsu VUV4 Multi Pixel Photon Counters (MPPCs). Various SiPM and MPPC parameters, such as dark noise, gain, direct crosstalk, correlated avalanches and photon detection efficiency were measured as a function of the applied over voltage and wavelength at liquid xenon temperature (163~K). The results from this study are used to provide updated estimates of the achievable energy resolution at the decay QQ-value for the nEXO design

    Passive Q-switching and mode-locking for the generation of nanosecond to femtosecond pulses

    Full text link
    corecore