343 research outputs found

    Origin of phenotypes: Genes and transcripts

    Get PDF

    An effort to make sense of antisense transcription in bacteria

    Get PDF
    Analysis of bacterial transcriptomes have shown the existence of a genome-wide process of overlapping transcription due to the presence of antisense RNAs, as well as mRNAs that overlapped in their entire length or in some portion of the 5'- and 3'-UTR regions. The biological advantages of such overlapping transcription are unclear but may play important regulatory roles at the level of transcription, RNA stability and translation. In a recent report, the human pathogen Staphylococcus aureus is observed to generate genome-wide overlapping transcription in the same bacterial cells leading to a collection of short RNA fragments generated by the endoribonuclease III, RNase III. This processing appears most prominently in Gram-positive bacteria. The implications of both the use of pervasive overlapping transcription and the processing of these double stranded templates into short RNAs are explored and the consequences discussed

    High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression

    Get PDF
    Many Eukaryotic genes possess multiple alternative promoters with distinct expression specificities. Therefore, comprehensively annotating promoters and deciphering their individual regulatory dynamics is critical for gene expression profiling applications, and for our understanding of regulatory complexity. We introduce RAMPAGE, a novel promoter activity profiling approach that combines extremely specific 5'-complete cDNA sequencing with an integrated data analysis workflow to address the limitations of current techniques. RAMPAGE features a streamlined protocol for fast and easy generation of highly multiplexed sequencing libraries, offers very high transcription start site specificity, generates accurate and reproducible promoter expression measurements, and yields extensive transcript connectivity information through paired-end cDNA sequencing. We used RAMPAGE in a genome-wide study of promoter activity throughout 36 stages of the life cycle of Drosophila melanogaster, and describe here a comprehensive dataset that represents the first available developmental timecourse of promoter usage. We found that over 40% of developmentally expressed genes have at least 2 promoters, and that alternative promoters generally implement distinct regulatory programs. Transposable elements, long proposed to play a central role in the evolution of their host genomes through their ability to regulate gene expression, contribute at least 1,300 promoters shaping the developmental transcriptome of D. melanogaster. Hundreds of these promoters drive the expression of annotated genes, and transposons often impart their own expression specificity upon the genes they regulate. These observations provide support for the theory that transposons may drive regulatory innovation through the distribution of stereotyped cis-regulatory modules throughout their host genomes

    Rank-statistics based enrichment-site prediction algorithm developed for chromatin immunoprecipitation on chip experiments

    Get PDF
    Background: High density oligonucleotide tiling arrays are an effective and powerful platform for conducting unbiased genome-wide studies. The ab initio probe selection method employed in tiling arrays is unbiased, and thus ensures consistent sampling across coding and non-coding regions of the genome. Tiling arrays are increasingly used in chromatin immunoprecipitation (IP) experiments (ChIP on chip). ChIP on chip facilitates the generation of genome-wide maps of in-vivo interactions between DNA-associated proteins including transcription factors and DNA. Analysis of the hybridization of an immunoprecipitated sample to a tiling array facilitates the identification of ChIP-enriched segments of the genome. These enriched segments are putative targets of antibody assayable regulatory elements. The enrichment response is not ubiquitous across the genome. Typically 5 to 10% of tiled probes manifest some significant enrichment. Depending upon the factor being studied, this response can drop to less than 1%. The detection and assessment of significance for interactions that emanate from non-canonical and/or un-annotated regions of the genome is especially challenging. This is the motivation behind the proposed algorithm. Results: We have proposed a novel rank and replicate statistics-based methodology for identifying and ascribing statistical confidence to regions of ChIP-enrichment. The algorithm is optimized for identification of sites that manifest low levels of enrichment but are true positives, as validated by alternative biochemical experiments. Although the method is described here in the context of ChIP on chip experiments, it can be generalized to any treatment-control experimental design. The results of the algorithm show a high degree of concordance with independent biochemical validation methods. The sensitivity and specificity of the algorithm have been characterized via quantitative PCR and independent computational approaches. Conclusion: The algorithm ranks all enrichment sites based on their intra-replicate ranks and inter-replicate rank consistency. Following the ranking, the method allows segmentation of sites based on a meta p-value, a composite array signal enrichment criterion, or a composite of these two measures. The sensitivities obtained subsequent to the segmentation of data using a meta p-value of 10(-5), an array signal enrichment of 0.2 and a composite of these two values are 88%, 87% and 95%, respectively

    Extracellular vesicle-mediated transfer of processed and functional RNY5 RNA

    Get PDF
    Extracellular vesicles (EVs) have been proposed as a means to promote intercellular communication. We show that when human primary cells are exposed to cancer cell EVs, rapid cell death of the primary cells is observed, while cancer cells treated with primary or cancer cell EVs do not display this response. The active agents that trigger cell death are 29- to 31-nucleotide (nt) or 22- to 23-nt processed fragments of an 83-nt primary transcript of the human RNY5 gene that are highly likely to be formed within the EVs. Primary cells treated with either cancer cell EVs, deproteinized total RNA from either primary or cancer cell EVs, or synthetic versions of 31- and 23-nt fragments trigger rapid cell death in a dose-dependent manner. The transfer of processed RNY5 fragments through EVs may reflect a novel strategy used by cancer cells toward the establishment of a favorable microenvironment for their proliferation and invasion

    Conserved noncoding transcription and core promoter regulatory code in early Drosophila development

    Get PDF
    Multicellular development is driven by regulatory programs that orchestrate the transcription of protein-coding and noncoding genes. To decipher this genomic regulatory code, and to investigate the developmental relevance of noncoding transcription, we compared genome-wide promoter activity throughout embryogenesis in 5 Drosophila species. Core promoters, generally not thought to play a significant regulatory role, in fact impart restrictions on the developmental timing of gene expression on a global scale. We propose a hierarchical regulatory model in which core promoters define broad windows of opportunity for expression, by defining a range of transcription factors from which they can receive regulatory inputs. This two-tiered mechanism globally orchestrates developmental gene expression, including extremely widespread noncoding transcription. The sequence and expression specificity of noncoding RNA promoters are evolutionarily conserved, implying biological relevance. Overall, this work introduces a hierarchical model for developmental gene regulation, and reveals a major role for noncoding transcription in animal development

    Non-polyadenylated transcription in embryonic stem cells reveals novel non-coding RNA related to pluripotency and differentiation

    Get PDF
    The transcriptional landscape in embryonic stem cells (ESCs) and during ESC differentiation has received considerable attention, albeit mostly confined to the polyadenylated fraction of RNA, whereas the non-polyadenylated (NPA) fraction remained largely unexplored. Notwithstanding, the NPA RNA super-family has every potential to participate in the regulation of pluripotency and stem cell fate. We conducted a comprehensive analysis of NPA RNA in ESCs using a combination of whole-genome tiling arrays and deep sequencing technologies. In addition to identifying previously characterized and new non-coding RNA members, we describe a group of novel conserved RNAs (snacRNAs: small NPA conserved), some of which are differentially expressed between ESC and neuronal progenitor cells, providing the first evidence of a novel group of potentially functional NPA RNA involved in the regulation of pluripotency and stem cell fate. We further show that minor spliceosomal small nuclear RNAs, which are NPA, are almost completely absent in ESCs and are upregulated in differentiation. Finally, we show differential processing of the minor intron of the polycomb group gene Eed. Our data suggest that NPA RNA, both known and novel, play important roles in ESCs

    De novo DNA demethylation and non-coding transcription define active intergenic regulatory elements

    Get PDF
    Deep sequencing of mammalian DNA methylomes has uncovered a previously unpredicted number of discrete hypomethylated regions in intergenic space (iHMRs). Here, we combined whole genome bisulfite sequencing data with extensive gene-expression and chromatin-state data to define functional classes of iHMRs, and to reconstruct the dynamics of their establishment in a developmental setting. Comparing HMR profiles in embryonic stem and primary blood cells, we show that iHMRs mark an exclusive subset of active DNase hypersensitive sites (DHS), and that both developmentally constitutive and cell-type specific iHMRs display chromatin states typical of distinct regulatory elements. We also observe that iHMR changes are more predictive of nearby gene activity than the promoter HMR itself, and that expression of non-coding RNAs within the iHMR accompanies full activation and complete demethylation of mature B cell enhancers. Conserved sequence features corresponding to iHMR transcript start sites, including a discernable TATAA motif, suggest a conserved, functional role for transcription in these regions. Similarly, we explored both primate-specific and human-population variation at iHMRs, finding that while enhancer iHMRs are more variable in sequence and methylation status than any other functional class, conservation of the TATA box is highly predictive of iHMR maintenance, reflecting the impact of sequence plasticity and transcriptional signals on iHMR establishment. Overall, our analysis allowed us to construct a 3-step timeline in which 1) intergenic DHS are pre-established in the stem cell, 2) partial demethylation of blood specific intergenic DHSs occurs in blood progenitors, and 3) complete iHMR formation and transcription coincide with enhancer activation in lymphoid-specified cells
    • …
    corecore