5 research outputs found

    NO1, a New Sigma 2 Receptor/TMEM97 Fluorescent Ligand, Downregulates SOCE and Promotes Apoptosis in the Triple Negative Breast Cancer Cell Lines

    No full text
    (1) Background: The structure of the Sigma 2 receptor/TMEM97 (σ2RTMEM97) has recently been reported. (2, 3) Methods and results: We used genetic and biochemical approaches to identify the molecular mechanism downstream of σ2R/TMEM97. The novel σ2R/TMEM97 fluorescent ligand, NO1, reduced the proliferation and survival of the triple negative breast cancer cell lines (TNBC: MDA-MB-231 and MDA-MB-468 cell lines), due to NO1-induced apoptosis. Greater bioaccumulation and faster uptake of NO1 in MDA-MB-231 cells compared to MCF10A or MCF7 cell lines were also shown. Accordingly, elevated σ2R/TMEM97 expression was confirmed by Western blotting. In contrast to NO1, other σ2R/TMEM97 ligands, such as SM21 and PB28, enhanced MDA-MB-231 cell proliferation and migration. Store-operated calcium entry (SOCE) is crucial for different cancer hallmarks. Here, we show that NO1, but not other σ2R/TMEM97 ligands, reduced SOCE in MDA-MB-231 cells. Similarly, TMEM97 silencing in MDA-MB-231 cells also impaired SOCE. NO1 administration downregulated STIM1-Orai1 interaction, probably by impairing the positive regulatory effect of σ2R/TMEM97 on STIM1, as we were unable to detect interaction with Orai1. (4) Conclusion: σ2R/TMEM97 is a key protein for the survival of triple negative breast cancer cells by promoting SOCE; therefore, NO1 may become a good pharmacological tool to avoid their proliferation

    Transcriptomic rationale for synthetic lethality-targeting ERCC1 and CDKN1A in chronic myelomonocytic leukaemia

    No full text
    Despite the absence of mutations in the DNA repair machinery in myeloid malignancies, the advent of high-throughput sequencing and discovery of splicing and epigenetics defects in chronic myelomonocytic leukaemia (CMML) prompted us to revisit a pathogenic role for genes involved in DNA damage response. We screened for misregulated DNA repair genes by enhanced RNA-sequencing on bone marrow from a discovery cohort of 27 CMML patients and 9 controls. We validated 4 differentially expressed candidates in CMML CD34(+) bone marrow selected cells and in an independent cohort of 74 CMML patients, mutationally contextualized by targeted sequencing, and assessed their transcriptional behavior in 70 myelodysplastic syndrome, 66 acute myeloid leukaemia and 25 chronic myeloid leukaemia cases. We found BAP1 and PARP1 down-regulation to be specific to CMML compared with other related disorders. Chromatin-regulator mutated cases showed decreased BAP1 dosage. We validated a significant over-expression of the double strand break-fidelity genes CDKN1A and ERCC1, independent of promoter methylation and associated with chemorefractoriness. In addition, patients bearing mutations in the splicing component SRSF2 displayed numerous aberrant splicing events in DNA repair genes, with a quantitative predominance in the single strand break pathway. Our results highlight potential targets in this disease, which currently has few therapeutic options
    corecore