39 research outputs found

    TRPC Channels in the SOCE Scenario

    Get PDF
    Transient receptor potential (TRP) proteins form non-selective Ca2+ permeable channels that contribute to the modulation of a number of physiological functions in a variety of cell types. Since the identification of TRP proteins in Drosophila, it is well known that these channels are activated by stimuli that induce PIP2 hydrolysis. The canonical TRP (TRPC) channels have long been suggested to be constituents of the store-operated Ca2+ (SOC) channels; however, none of the TRPC channels generate Ca2+ currents that resemble ICRAC. STIM1 and Orai1 have been identified as the components of the Ca2+ release-activated Ca2+ (CRAC) channels and there is a body of evidence supporting that STIM1 is able to gate Orai1 and TRPC1 in order to mediate non-selective cation currents named ISOC. STIM1 has been found to interact to and activate Orai1 and TRPC1 by different mechanisms and the involvement of TRPC1 in store-operated Ca2+ entry requires both STIM1 and Orai1. In addition to the participation of TRPC1 in the ISOC currents, TRPC1 and other TRPC proteins might play a relevant role modulating Orai1 channel function. This review summarizes the functional role of TRPC channels in the STIM1–Orai1 scenario.Junta de Extremadura Consejería de Economía e Infraestructura-FEDER Grant IB16046 y GR18061Junta de Extremadura TA18011 y TA18054Ministerio de Ciencia, Innovación y Universidade

    TRPC6 channels are required for proliferation, migration and invasion of breast cancer cell lines by modulation of Orai1 and Orai3 surface exposure

    Get PDF
    Transient receptor potential channels convey signaling information from a number of stimuli to a wide variety of cellular functions, mainly by inducing changes in cytosolic Ca2+ concentration. Different members of the TRPC, TRPM and TRPV subfamilies have been reported to play a role in tumorigenesis. Here we show that the estrogen receptor positive and triple negative breast cancer cell lines, MCF7 and MDA-MB-231, respectively, exhibit enhanced expression of the TRPC6 channel as compared to the non-tumoral MCF10A cell line. In vitro TRPC6 knockdown using shRNA impaired MCF7 and MDA-MB-231 cell proliferation, migration and invasion detected by BrdU incorporation, wound healing and Boyden chamber assays, respectively. Using RNAi-mediated TRPC6 silencing as well as overexpression of the pore-dead dominant-negative TRPC6 mutant we have found that TRPC6 plays a relevant role in the activation of store-operated Ca2+ entry in the breast cancer cell lines but not in non-tumoral breast cells. Finally, we have found that TRPC6 interacts with Orai1 and Orai3 in MCF7 and MDA-MB-231 cells and is required for the translocation of Orai1 and Orai3 to the plasma membrane in MDA-MB-231 and MCF7 cells, respectively, upon Ca2+ store depletion. These findings introduce a novel mechanism for the modulation of Ca2+ influx and the development of different cancer hallmarks in breast cancer cells

    Store-Operated Calcium Entry in Breast Cancer Cells Is Insensitive to Orai1 and STIM1 N-Linked Glycosylation.

    Get PDF
    N-linked glycosylation is a post-translational modification that affects protein function, structure, and interaction with other proteins. The store-operated Ca2+ entry (SOCE) core proteins, Orai1 and STIM1, exhibit N-glycosylation consensus motifs. Abnormal SOCE has been associated to a number of disorders, including cancer, and alterations in Orai1 glycosylation have been related to cancer invasiveness and metastasis. Here we show that treatment of non-tumoral breast epithelial cells with tunicamycin attenuates SOCE. Meanwhile, tunicamycin was without effect on SOCE in luminal MCF7 and triple negative breast cancer (TNBC) MDA-MB-231 cells. Ca2+ imaging experiments revealed that expression of the glycosylation-deficient Orai1 mutant (Orai1N223A) did not alter SOCE in MCF10A, MCF7 and MDA-MB-231 cells. However, expression of the non-glycosylable STIM1 mutant (STIM1N131/171Q) significantly attenuated SOCE in MCF10A cells but was without effect in SOCE in MCF7 and MDA-MB-231 cells. In non-tumoral cells impairment of STIM1 N-linked glycosylation attenuated thapsigargin (TG)-induced caspase-3 activation while in breast cancer cells, which exhibit a smaller caspase-3 activity in response to TG, expression of the non-glycosylable STIM1 mutant (STIM1N131/171Q) was without effect on TG-evoked caspase-3 activation. Summarizing, STIM1 N-linked glycosylation is essential for full SOCE activation in non-tumoral breast epithelial cells; by contrast, SOCE in breast cancer MCF7 and MDA-MB-231 cells is insensitive to Orai1 and STIM1 N-linked glycosylation, and this event might participate in the development of apoptosis resistance

    EFHB is a Novel Cytosolic Ca2+ Sensor That Modulates STIM1-SARAF Interaction

    Get PDF
    Background/Aims: STIM1 and Orai1 are the key components of store-operated Ca2+ entry (SOCE). Among the proteins involved in the regulation of SOCE, SARAF prevents spontaneous activation of SOCE and modulates STIM1 function. Methods: Cytosolic Ca2+ mobilization was estimated in fura-2-loaded cells using an epifluorescence inverted microscope. STIM1 interaction with Orai1, EFHB (EF-hand domain family member B, also known as CFAP21) and SARAF was detected by immunoprecipitation followed by Western blotting using specific antibodies. The involvement of EFHB in the translocation of NFAT to the nucleus was detected by confocal microscopy. Results: Here, we report the identification of EFHB as a new SOCE regulator. EFHB interacts with STIM1 upon store depletion and dissociates through a Ca2+-dependent mechanism. RNAi-mediated silencing as well as overexpression studies revealed that EFHB plays a relevant role in the interaction of STIM1 and Orai1 upon store depletion, the activation of SOCE and NFAT translocation from the cytosol to the nucleus. Silencing EFHB expression abolished the dissociation of SARAF from STIM1, which indicates that EFHB might play an important role in the dynamic interaction between both proteins, which is relevant for the activation of Orai1 channels upon Ca2+ store depletion and their subsequent modulation via slow Ca2+-dependent inactivation. Conclusion: Our results indicate that EFHB is a new SOCE regulator that modulates STIM1-SARAF interaction

    Store-Operated Ca<sup>2+</sup> Entry in Breast Cancer Cells: Remodeling and Functional Role

    Get PDF
    Breast cancer is the most common type of cancer in women. It is a heterogeneous disease that ranges from the less undifferentiated luminal A to the more aggressive basal or triple negative breast cancer molecular subtype. Ca2+ influx from the extracellular medium, but more specifically store-operated Ca2+ entry (SOCE), has been reported to play an important role in tumorigenesis and the maintenance of a variety of cancer hallmarks, including cell migration, proliferation, invasion or epithelial to mesenchymal transition. Breast cancer cells remodel the expression and functional role of the molecular components of SOCE. This review focuses on the functional role and remodeling of SOCE in breast cancer cells. The current studies suggest the need to deepen our understanding of SOCE in the biology of the different breast cancer subtypes in order to develop new and specific therapeutic strategies

    Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells

    Get PDF
    The goal of this study was to evaluate the potential activation of the nuclear factor erythroid 2-related factor and the antioxidant-responsive element (Nrf2–ARE) signaling pathway in response to melatonin in isolated mouse pancreatic acinar cells. Changes in intracellular free Ca2+ concentration were followed by fluorimetric analysis of fura-2-loaded cells. The activations of PKC and JNK were measured by Western blot analysis. Quantitative reverse transcription–polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Immunocytochemistry was employed to determine nuclear location of phosphorylated Nrf2, and the cellular redox state was monitored following MitoSOX Red-derived fluorescence. Our results show that stimulation of fura-2-loaded cells with melatonin (1 µM to 1 mM), in the presence of Ca2+ in the extracellular medium, induced a slow and progressive increase of [Ca2+]c toward a stable level. Melatonin did not inhibit the typical Ca2+ response induced by CCK-8 (1 nM). When the cells were challenged with indoleamine in the absence of Ca2+ in the extracellular solution (medium containing 0.5 mM EGTA) or in the presence of 1 mM LaCl3, to inhibit Ca2+ entry, we could not detect any change in [Ca2+]c. Nevertheless, CCK-8 (1 nM) was able to induce the typical mobilization of Ca2+. When the cells were incubated with the PKC activator PMA (1 µM) in the presence of Ca2+ in the extracellular medium, we observed a response similar to that noted when the cells were challenged with melatonin 100 µM. However, in the presence of Ro31-8220 (3 µM), a PKC inhibitor, stimulation of cells with melatonin failed to evoke changes in [Ca2+]c. Immunoblots, using an antibody specific for phospho-PKC, revealed that melatonin induces PKCα activation, either in the presence or in the absence of external Ca2+. Melatonin induced the phosphorylation and nuclear translocation of the transcription factor Nrf2, and evoked a concentration-dependent increase in the expression of the antioxidant enzymes NAD(P)H-quinone oxidoreductase 1, catalytic subunit of glutamate-cysteine ligase, and heme oxygenase-1. Incubation of MitoSOX Red-loaded pancreatic acinar cells in the presence of 1 nM CCK-8 induced a statistically significant increase in dye-derived fluorescence, reflecting an increase in oxidation, that was abolished by pretreatment of cells with melatonin (100 µM) or PMA (1 µM). On the contrary, pretreatment with Ro31-8220 (3 µM) blocked the effect of melatonin on CCK-8-induced increase in oxidation. Finally, phosphorylation of JNK in the presence of CCK-8 or melatonin was also observed. We conclude that melatonin, via modulation of PKC and Ca2+ signaling, could potentially stimulate the Nrf2-mediated antioxidant response in mouse pancreatic acinar cells.This work was supported by Junta de Extremadura-FEDER. Patricia Santofimia-Castaño was granted a fellowship from Fundacion Tatiana Perez de Guzman el Bueno. J.P.B. is funded by the Spanish Ministerio de Economia y Competitividad (SAF2013-41177-R), the Instituto de Salud Carlos III (RD12/0043/0021), the SP3-People-MC-ITN programme of the European Commission (608381), the National Institute on Drug Abuse (National Institutes of Health; 1R21DA037678-01), and the European Regional Development Fund.Peer Reviewe

    FKBP25 and FKBP38 regulate non-capacitative calcium entry through TRPC6

    Get PDF
    AbstractNon-capacitative calcium entry (NCCE) contributes to cell activation in response to the occupation of G protein-coupled membrane receptors. Thrombin administration to platelets evokes the synthesis of diacylglycerol downstream of PAR receptor activation. Diacylglycerol evokes NCCE through activating TRPC3 and TRPC6 in human platelets. Although it is known that immunophilins interact with TRPCs, the role of immunophilins in the regulation of NCCE remains unknown. Platelet incubation with FK506, an immunophilin antagonist, reduced OAG-evoked NCCE in a concentration-dependent manner, an effect that was independent on the inactivation of calcineurin (CaN). FK506 was unable to reduce NCCE evoked by OAG in platelets from TRPC6−/− mice. In HEK-293 cells overexpressing TRPC6, currents through TRPC6 were altered in the presence of FK506. We have found interaction between FKBP38 and other FKBPs, like FKBP25, FKBP12, and FKBP52 that were not affected by FK506, as well as with calmodulin (CaM). FK506 modified the pattern of association between FKBP25 and TRPCs as well as impaired OAG-evoked TRPC3 and TRPC6 coupling in both human and mouse platelets. By performing biotinylation experiments we have elucidated that FKBP25 and FKBP38 might be found at different cellular location, the plasma membrane and the already described intracellular locations. Finally, FKBP25 and FKBP38 silencing significantly inhibits OAG-evoked NCCE in MEG-01 and HEK293 cells, while overexpression of FKBP38 does not modify NCCE in HEK293 cells. All together, these findings provide strong evidence for a role of immunophilins, including FKBP25 and FKBP38, in NCCE mediated by TRPC6

    Molecular modulators of store-operated calcium entry.

    No full text
    Three decades ago, store-operated Ca(2+) entry (SOCE) was identified as a unique mechanism for Ca(2+) entry through plasma membrane (PM) Ca(2+)-permeable channels modulated by the intracellular Ca(2+) stores, mainly the endoplasmic reticulum (ER). Extensive analysis of the communication between the ER and the PM leads to the identification of the protein STIM1 as the ER-Ca(2+) sensor that gates the Ca(2+) channels in the PM. Further analysis on the biophysical, electrophysiological and biochemical properties of STIM1-dependent Ca(2+) channels has revealed the presence of a highly Ca(2+)-selective channel termed Ca(2+) release-activated Ca(2+) channel (CRAC), consisting of Orai1 subunits, and non-selective cation channels named store-operated channels (SOC), including both Orai1 and TRPC channel subunits. Since the identification of the key elements of CRAC and SOC channels a number of intracellular modulators have been reported to play essential roles in the stabilization of STIM-Orai interactions, collaboration with STIM1 conformational changes or mediating slow Ca(2+)-dependent inactivation. Here, we review our current understanding of some of the key modulators of STIM1-Orai1 interaction, including the proteins CRACR2A, STIMATE, SARAF, septins, golli and ORMDL3

    Store-Operated Calcium Entry and Its Implications in Cancer Stem Cells

    No full text
    Tumors are composed by a heterogeneous population of cells. Among them, a sub-population of cells, termed cancer stem cells, exhibit stemness features, such as self-renewal capabilities, disposition to differentiate to a more proliferative state, and chemotherapy resistance, processes that are all mediated by Ca2+. Ca2+ homeostasis is vital for several physiological processes, and alterations in the patterns of expressions of the proteins and molecules that modulate it have recently become a cancer hallmark. Store-operated Ca2+ entry is a major mechanism for Ca2+ entry from the extracellular medium in non-excitable cells that leads to increases in the cytosolic Ca2+ concentration required for several processes, including cancer stem cell properties. Here, we focus on the participation of STIM, Orai, and TRPC proteins, the store-operated Ca2+ entry key components, in cancer stem cell biology and tumorigenesis
    corecore