246 research outputs found

    3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration

    Full text link
    In this paper, we propose the 3DFeat-Net which learns both 3D feature detector and descriptor for point cloud matching using weak supervision. Unlike many existing works, we do not require manual annotation of matching point clusters. Instead, we leverage on alignment and attention mechanisms to learn feature correspondences from GPS/INS tagged 3D point clouds without explicitly specifying them. We create training and benchmark outdoor Lidar datasets, and experiments show that 3DFeat-Net obtains state-of-the-art performance on these gravity-aligned datasets.Comment: 17 pages, 6 figures. Accepted in ECCV 201

    State/Operator Correspondence in Higher-Spin dS/CFT

    Full text link
    A recently conjectured microscopic realization of the dS4_4/CFT3_3 correspondence relating Vasiliev's higher-spin gravity on dS4_4 to a Euclidean Sp(N)Sp(N) CFT3_3 is used to illuminate some previously inaccessible aspects of the dS/CFT dictionary. In particular it is argued that states of the boundary CFT3_3 on S2S^2 are holographically dual to bulk states on geodesically complete, spacelike R3R^3 slices which terminate on an S2S^2 at future infinity. The dictionary is described in detail for the case of free scalar excitations. The ground states of the free or critical Sp(N)Sp(N) model are dual to dS-invariant plane-wave type vacua, while the bulk Euclidean vacuum is dual to a certain mixed state in the CFT3_3. CFT3_3 states created by operator insertions are found to be dual to (anti) quasinormal modes in the bulk. A norm is defined on the R3R^3 bulk Hilbert space and shown for the scalar case to be equivalent to both the Zamolodchikov and pseudounitary C-norm of the Sp(N)Sp(N) CFT3_3.Comment: 24 page

    Ground Processing of Cassini RADAR Imagery of Titan

    Get PDF
    The Cassini RADAR instrument onboard the Cassini Orbiter is currently collecting SAR Imagery of the surface of Saturn's largest moon, Titan. This paper describes the ground processing of Cassini SAR data. We focus upon the unusual features of the data and how these features impact the processing. We exhibit a data dependent mechanism we have implemented for eliminating artifacts due to attitude and ephemeris knowledge error. Finally we describe how we trade-off SAR performance vs. area of coverage when we design our spacecraft pointing profiles

    Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars

    Get PDF
    Lobate features abutting massifs and escarpments in the middle latitudes of Mars have been recognized in images for decades, but their true nature has been controversial, with hypotheses of origin such as ice-lubricated debris flows or glaciers covered by a layer of surface debris. These models imply an ice content ranging from minor and interstitial to massive and relatively pure. Soundings of these deposits in the eastern Hellas region by the Shallow Radar on the Mars Reconnaissance Orbiter reveal radar properties entirely consistent with massive water ice, supporting the debris-covered glacier hypothesis. The results imply that these glaciers formed in a previous climate conducive to glaciation at middle latitudes. Such features may collectively represent the most extensive nonpolar ice yet recognized on Mars

    CHILES: HI morphology and galaxy environment at z=0.12 and z=0.17

    Get PDF
    We present a study of 16 HI-detected galaxies found in 178 hours of observations from Epoch 1 of the COSMOS HI Large Extragalactic Survey (CHILES). We focus on two redshift ranges between 0.108 <= z <= 0.127 and 0.162 <= z <= 0.183 which are among the worst affected by radio frequency interference (RFI). While this represents only 10% of the total frequency coverage and 18% of the total expected time on source compared to what will be the full CHILES survey, we demonstrate that our data reduction pipeline recovers high quality data even in regions severely impacted by RFI. We report on our in-depth testing of an automated spectral line source finder to produce HI total intensity maps which we present side-by-side with significance maps to evaluate the reliability of the morphology recovered by the source finder. We recommend that this become a common place manner of presenting data from upcoming HI surveys of resolved objects. We use the COSMOS 20k group catalogue, and we extract filamentary structure using the topological DisPerSE algorithm to evaluate the \hi\ morphology in the context of both local and large-scale environments and we discuss the shortcomings of both methods. Many of the detections show disturbed HI morphologies suggesting they have undergone a recent interaction which is not evident from deep optical imaging alone. Overall, the sample showcases the broad range of ways in which galaxies interact with their environment. This is a first look at the population of galaxies and their local and large-scale environments observed in HI by CHILES at redshifts beyond the z=0.1 Universe.Comment: 23 pages, 12 figures, 1 interactive 3D figure, accepted to MNRA

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

    Get PDF
    We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60 S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved datacoverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72m lower and the area of ice sheet grounded on bed below sea level is increased by 10 %. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets
    • …
    corecore