69 research outputs found

    Aplicaciones de los sensores de los smartphones a la didáctica de la física experimental

    Full text link
    Tesis por compendioTraditionally, Physics laboratory practices have two objectives. On the one hand, students reinforce the concepts that they have acquired in theory lessons. On the other hand, they get used to the experimental techniques. However, students sometimes consider that the practices are routine and of little interest. Several resources, based on Information and Communication Technologies, have been used to deal with this problem. The smartphones of the students themselves incorporate various sensors. Free available applications are able to control the sensors, acquire data and transmit them. The smartphones become measuring tools. The main objective of this Thesis is to propose new experiments for Physics laboratories that take advantage of this way of using smartphones. A collection of works is presented as a set of publications. The acceleration sensor enables us to study: the free and damped oscillations of the smartphone; the normal modes of a coupled two dimensional vibrating system of smartphones; and the mechanical beat. The ambient light sensor is used to analyze the efficiency of several types of optical sources; the dependence of the illuminance on the distance to the source is also studied. Finally, the microphone enables us to characterize the acoustic beat phenomenon. The new experiments are focused on university and high school students. Our surveys show the higher rating given to this type of experiences with respect to their traditional alternatives.Tradicionalmente, el objetivo de las prácticas de laboratorio de las asignaturas de Física es doble: por una parte, que los estudiantes refuercen los conocimientos adquiridos en las clases de teoría; por otra, que se habitúen a las técnicas experimentales. Sin embargo, los alumnos consideran que en ocasiones las prácticas son rutinarias y poco interesantes. Para paliar este problema, se ha hecho uso de diversos recursos basados en las Tecnologías de la Información y las Comunicaciones. El objetivo fundamental de esta Tesis es proponer diversos experimentos de Física en los que se utilizan como herramientas de medida los sensores de que disponen los smartphones de los propios estudiantes, aprovechando las aplicaciones gratuitas existentes para el control de estos sensores y para la toma y transmisión de los datos obtenidos. Con este fin se ha realizado un conjunto de trabajos, recogidos en esta Tesis en formato de compendio de publicaciones, en los que se proponen nuevas experiencias de laboratorio de Física con smartphones. En ellas se saca partido del sensor de aceleración para el estudio de las oscilaciones libres y amortiguadas de un smartphone, de los modos de vibración de dos acoplados, y del batido mecánico; del sensor de luz ambiente para el análisis de la eficiencia de diversos tipos de fuente, y de la dependencia de la iluminancia con la distancia; y, finalmente, del micrófono para la caracterización del fenómeno del batido acústico. Las experiencias diseñadas están enfocadas a estudiantes universitarios y de educación secundaria. Las encuestas realizadas muestran la mayor califica-ción otorgada a este tipo de experiencias con respecto a sus alternativas tradicionales.Tradicionalment, l'objectiu de les pràctiques de laboratori de les assignatures de Física és doble: d'una banda, que els estudiants reforcen els coneixements adquirits en les classes de teoria; per una altra, que s'habituen a les tècniques experimentals. No obstant això, els alumnes consideren que en ocasions les pràctiques són rutinàries i poc interessants. Per a pal¿liar aquest problema, s'ha fet ús de diversos recursos basats en les Tecnologies de la Informació i les Comunicacions. L'objectiu fonamental d'aquesta Tesi és proposar diversos experiments de Física en els quals s'utilitzen com a eines de mesura els sensors de què disposen els smartphones dels propis estudiants, aprofitant les aplicacions gratuïtes existents per al control d'aquests sensors i per a la presa i la transmissió de les dades obtingudes. Amb aquesta finalitat s'ha realitzat un conjunt de treballs, recollits en aquesta Tesi en format de compendi de publicacions, en els quals es proposen noves experiències de laboratori de Física amb smartphones. En aquestes es trau partit del sensor d'acceleració per a l'estudi de les oscil¿lacions lliures i esmorteïdes d'un smartphone, dels modes de vibració de dos acoblats, i del batut mecànic; del sensor de llum ambiente per a l'anàlisi de l'eficiència de diversos tipus de font, i de la dependència de la il¿luminancia amb la distància; i, finalment, del micròfon per a la caracterització del fenomen del batut acústic. Les experiències dissenyades estan enfocades a estudiants universitaris i d'educació secundària. Les enquestes realitzades mostren la major qualificació atorgada a aquest tipus d'experiències pel que fa a les seues alternatives tradicionals.Giménez Valentín, MH. (2017). Aplicaciones de los sensores de los smartphones a la didáctica de la física experimental [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/83123TESISCompendi

    Direct Visualization of Mechanical Beats by Means of an Oscillating Smartphone

    Full text link
    [EN] The resonance phenomenon is widely known in physics courses.1 Qualitatively speaking, resonance takes place in a driven oscillating system whenever the frequency approaches the natural frequency, resulting in maximal oscillatory amplitude. Very closely related to resonance is the phenomenon of mechanical beating, which occurs when the driving and natural frequencies of the system are slightly different. The frequency of the beat is just the difference of the natural and driving frequencies. Beats are very familiar in acoustic systems. There are several works in this journal on visualizing the beats in acoustic systems.2¿4 For instance, the microphone and the speaker of two mobile devices were used in previous work2 to analyze the acoustic beats produced by two signals of close frequencies. The formation of beats can also be visualized in mechanical systems, such as a mass-spring system5 or a double-driven string.6 Here, the mechanical beats in a smartphone-spring system are directly visualized in a simple way. The frequency of the beats is measured by means of the acceleration sensor of a smartphone, which hangs from a spring attached to a mechanical driver. This laboratory experiment is suitable for both high school and first-year university physics courses.The authors would like to thank the Institute of Educational Sciences of the Universitat Politecnica de Valencia (Spain) for the support of the Teaching Innovation Groups MoMa and e-MACAFI and for the financial support through the Project PIME 2015 B18.Giménez Valentín, MH.; Salinas Marín, I.; Monsoriu Serra, JA.; Castro-Palacio, JC. (2017). Direct Visualization of Mechanical Beats by Means of an Oscillating Smartphone. The Physics Teacher. 55(7):424-425. https://doi.org/10.1119/1.5003745S42442555

    Using a mobile phone acceleration sensor in physics experiments on free and damped harmonic oscillations

    Full text link
    We have used a mobile phone acceleration sensor, and the Accelerometer Monitor application for Android, to collect data in physics experiments on free and damped oscillations. Results for the period, frequency, spring constant, and damping constant agree very well with measurements obtained by other methods. These widely available sensors are likely to find increased use in instructional laboratories.The authors would like to thank the Institute of Education Sciences, Universitat Politecnica de Valencia (Spain), for the support of the Teaching Innovation Group, MoMa.Castro Palacio, JC.; Velazquez Abad, L.; Gimenez Valentin, MH.; Monsoriu Serra, JA. (2013). Using a mobile phone acceleration sensor in physics experiments on free and damped harmonic oscillations. American Journal of Physics. 81:472-475. doi:10.1119/1.4793438S4724758

    Theoretical and experimental study of the normal modes in a coupled two-dimensional system

    Full text link
    [EN] In this work, the normal modes of a two-dimensional oscillating system have been studied from a theoretical and experimental point of view. The normal frequencies predicted by the Hessian matrix for a coupled two-dimensional particle system are compared to those obtained for a real system consisting of two oscillating smartphones coupled one to the other by springs. Experiments are performed on an air table in order to largely reduce the friction forces. The oscillation data are captured by the acceleration sensor of the smartphones and exported to file for further analysis. The experimental frequencies compare reasonably well with the theoretical predictions, specifically, within 1.7% of discrepancy.The authors would like to thank the Institute of Educational Sciences of the Universitat Politecnica de Val ` encia (Spain) ` for the support of the Teaching Innovation Groups MoMa and e-MACAF and for the financial support through the Project PIME 2015 B18. The authors would also like to thank Mrs Janet Anne Handcock for kindly revising the manuscript as a native English speaker.Giménez Valentín, MH.; Castro-Palacio, J.; Gómez-Tejedor, JA.; Velázquez, L.; Monsoriu Serra, JA. (2017). Theoretical and experimental study of the normal modes in a coupled two-dimensional system. Revista Mexicana de Fisica E. 63:100-106. http://hdl.handle.net/10251/99643S1001066

    Some Learning Objects to Explain Kepler s Laws

    Full text link
    In this paper, we present some learning objects for the study of Kepler’s laws that graphically show the orbits and the movements of various planets. One of them shows the orbit of a planet from the point of view of a fixed planet, showing that the orbit is quite involved. No differentials equations are required, but only elementary vector calculus. The learning objects have been implemented in Matlab. © 2010 Wiley Periodicals, Inc. Comput Appl Eng Educ 21: 1–7, 2013; View this article online at wileyonlinelibrary.com/journal/cae; DOI 10.1002/cae.20446Benítez López, J.; Gimenez Valentin, MH.; Hueso Pagoaga, JL.; Martínez Molada, E.; Riera Guasp, J. (2013). Some Learning Objects to Explain Kepler s Laws. Computer Applications in Engineering Education. 21:1-7. doi:10.1002/cae.20446S172

    La simulación digital como apoyo para la visualización de procesos ondulatorios

    Get PDF
    Una de las líneas que venimos desarrollando en la enseñanza de la Física en la E.U.I.T.I. de la Universidad Politécnica de Valencia, es la de la simulación digital, utilizando animaciones, de procesos físicos relativamente complejos, tales como los ondulatorios. En esta comunicación se muestran mediante el programa ONDAS las posibilidades de este tipo de simulación para explicar conceptos tales como: ondas longitudinales, transversales y mixtas; ondas electromagnéticas; ondas estacionarias; dispersión; absorción; ...One of the guidelines that we are developing in Physics Education in the E.U.I.T.I. in the Universidad Politécnica de Valencia, is digital simulation, by animations, of relatively complex physical processes, such as wave processes. In this presentation, the program ONDAS shows the possibilities of digital simulation for explaining concepts such as: longitudinal, transverse and mixed waves; electromagnetic waves; standing waves; dispersion; absorption; ..

    Characterization of linear light sources with the smartphone's ambient light sensor

    Full text link
    The authors would like to thank the Institute of Educational Sciences of the Universitat Politecnica de Valencia (Spain) for the support of the Teaching Innovation Groups MoMa and e-MACAFI.Salinas Marín, I.; Gimenez Valentin, MH.; Monsoriu Serra, JA.; Castro-Palacio, J. (2018). Characterization of linear light sources with the smartphone's ambient light sensor. The Physics Teacher. 56(8):562-563. https://doi.org/10.1119/1.5064575S56256356

    Project-based learning using scientific poster as a tool for learning and acquisition of skills in physics subjects of engineering bachelor’s degrees

    Get PDF
    This article shows the experience of working on project-based learning using scientific posters, on the study of the mass geometry of matter, with students of various Physics subjects of Degrees in Engineering of the School of Design Engineering of the Polytechnic University of Valencia. The development of this work has been carried out with a dual purpose: on the one hand, to improve the teachinglearning process of mass geometry; and, on the other hand, to improve the acquisition of skills by students. This matter, which is studied in the Physics subjects of the first year of the degree, forms part of the basis of the studies of resistance of materials and theory of mechanisms of subsequent courses. The inclusion of two sessions of laboratory practices, as an extension of the work carried out in the theory and classroom practice sessions, has allowed us to study more deeply the theoretical concepts of mass geometry and their application to a real project, improving the learning by the students. In addition, the presentation of the project through the scientific poster has facilitated the acquisition of cross-curricular competencies such as application and practical thinking, teamwork, effective communication, and critical thinking

    Smartphone: a new device for teaching Physics

    Full text link
    [EN] This paper reports on the use of smartphone’s sensors to perform several experiments designed to teach fundamentals of Physics. We have adapted traditional physics laboratory sessions to the use of the different sensors that can be found in a typical smartphone, such as an accelerometer, and light and magnetic field sensors. The existence of a large repository of free AndroidTM and AppleTM applications which exploit the characteristics of these sensors facilitates the design of new experiments. A survey was done to the students in order to obtain feedback and to evaluate the success of the experience. The results of the survey showed a good acceptance of this method triggering their curiosity, with an average mark of 9 over 10. This project offers to the student a new way to think on smartphones as an attractive tool for possible application in experimental measurements and scientific demonstrations and not only as a socializing tool.Sans, JA.; Manjón Herrera, FJ.; Cuenca Gotor, VP.; Giménez Valentín, MH.; Salinas, I.; Barreiro Diez, JA.; Monsoriu Serra, JA.... (2015). Smartphone: a new device for teaching Physics. En 1ST INTERNATIONAL CONFERENCE ON HIGHER EDUCATION ADVANCES (HEAD' 15). Editorial Universitat Politècnica de València. 415-422. https://doi.org/10.4995/HEAD15.2015.332OCS41542

    Diseño y evaluación de un laboratorio virtual para visualizar momentos de un vector deslizante en 3D

    Full text link
    [EN] The use of multimedia tools for the development and implementation of teaching material is considered of paramount importance for first degree courses. Thus, we have observed, in fundamentals of Physics subjects, how the use of this kind of didactic material increases the motivation and the learning curve of the student. In this work, we present a virtual lab for the calculation of moments that allow multiple selections such as the vector representation, its action line and the moment in a 3D environment. This applet allows the user modifying the point of view and the scale in an interactive way. Besides the visualization, this virtual lab allows the calculation of the moment of a sliding vector with respect to an axis and perform different operation between them. Additionally, it helps to understand the relation between the velocity at a point and the angular velocity of the rigid body in rotation to whom it belongs, the moment of a force with respect to an axis, and the way that this force affects the rotation. All of this supports the development of several transversal skills.[ES] El uso de herramientas multimedia para el desarrollo e implementación de material didáctico se considera de una importancia capital para los primeros cursos de grado. Así, en las asignaturas de fundamentos de Física hemos observado cómo el uso de esta clase de material aumenta tanto la satisfacción como el aprendizaje del alumno. En este trabajo, presentamos un laboratorio virtual para el cálculo de momentos que permite múltiples opciones como la representación del vector, su línea de acción y su momento en un entorno 3D. Este applet permite al usuario modificar tanto el punto de vista como la escala de forma interactiva. Además de la visualización, este laboratorio virtual permite calcular el momento del vector deslizante respecto a un eje y realizar operaciones entre ellos. Asimismo, ayuda a comprender la relación entre la velocidad de un punto y la velocidad angular del sólido rígido en rotación al que pertenece, el momento de una fuerza respecto a un eje, y la forma en que dicha fuerza afecta a una rotación. Todo esto sustenta el desarrollo de diversas competencias transversales.JAS agradece al programa Ramón y Cajal la financiación y al Instituto de Diseño para la Fabricación y Producción Automatizada (IDF-UPV) por su apoyo.Gómez Tejedor, JA.; Monsoriu Serra, JA.; Salinas Marín, I.; Sans Tresserras, JÁ.; Cuenca Gotor, VP.; Giménez Valentín, MH. (2018). Diseño y evaluación de un laboratorio virtual para visualizar momentos de un vector deslizante en 3D. En IN-RED 2018. IV Congreso Nacional de Innovación Educativa y Docencia en Red. Editorial Universitat Politècnica de València. 299-312. https://doi.org/10.4995/INRED2018.2018.8744OCS29931
    corecore