11,437 research outputs found

    On N=8 attractors

    Full text link
    We derive and solve the black hole attractor conditions of N=8 supergravity by finding the critical points of the corresponding black hole potential. This is achieved by a simple generalization of the symplectic structure of the special geometry to all extended supergravities with N>2N>2. There are two solutions for regular black holes, one for 1/8 BPS ones and one for the non-BPS. We discuss the solutions of the moduli at the horizon for BPS attractors using N=2 language. An interpretation of some of these results in N=2 STU black hole context helps to clarify the general features of the black hole attractors.Comment: 15 page

    Further Evidence for a Merger Origin for the Thick Disk: Galactic Stars Along Lines-of-sight to Dwarf Spheroidal Galaxies

    Full text link
    The history of the Milky Way Galaxy is written in the properties of its stellar populations. Here we analyse stars observed as part of surveys of local dwarf spheroidal galaxies, but which from their kinematics are highly probable to be non-members. The selection function -- designed to target metal-poor giants in the dwarf galaxies, at distances of ~100kpc -- includes F-M dwarfs in the Milky Way, at distances of up to several kpc. Thestars whose motions are analysed here lie in the cardinal directions of Galactic longitude l ~ 270 and l ~ 90, where the radial velocity is sensitive to the orbital rotational velocity. We demonstrate that the faint F/G stars contain a significant population with V_phi ~ 100km/s, similar to that found by a targeted, but limited in areal coverage, survey of thick-disk/halo stars by Gilmore, Wyse & Norris (2002). This value of mean orbital rotation does not match either the canonical thick disk or the stellar halo. We argue that this population, detected at both l ~ 270 and l ~ 90, has the expected properties of `satellite debris' in the thick-disk/halo interface, which we interpret as remnants of the merger that heated a pre-existing thin disk to form the thick disk.Comment: Accepted, Astrophysical Journal Letter

    Generalized coherent states are unique Bell states of quantum systems with Lie group symmetries

    Full text link
    We consider quantum systems, whose dynamical symmetry groups are semisimple Lie groups, which can be split or decay into two subsystems of the same symmetry. We prove that the only states of such a system that factorize upon splitting are the generalized coherent states. Since Bell's inequality is never violated by the direct product state, when the system prepared in the generalized coherent state is split, no quantum correlations are created. Therefore, the generalized coherent states are the unique Bell states, i.e., the pure quantum states preserving the fundamental classical property of satisfying Bell's inequality upon splitting.Comment: 4 pages, REVTeX, amssymb style. More information on http://www.technion.ac.il/~brif/science.htm

    Quantum-to-Classical Correspondence and Hubbard-Stratonovich Dynamical Systems, a Lie-Algebraic Approach

    Full text link
    We propose a Lie-algebraic duality approach to analyze non-equilibrium evolution of closed dynamical systems and thermodynamics of interacting quantum lattice models (formulated in terms of Hubbard-Stratonovich dynamical systems). The first part of the paper utilizes a geometric Hilbert-space-invariant formulation of unitary time-evolution, where a quantum Hamiltonian is viewed as a trajectory in an abstract Lie algebra, while the sought-after evolution operator is a trajectory in a dynamic group, generated by the algebra via exponentiation. The evolution operator is uniquely determined by the time-dependent dual generators that satisfy a system of differential equations, dubbed here dual Schrodinger-Bloch equations, which represent a viable alternative to the conventional Schrodinger formulation. These dual Schrodinger-Bloch equations are derived and analyzed on a number of specific examples. It is shown that deterministic dynamics of a closed classical dynamical system occurs as action of a symmetry group on a classical manifold and is driven by the same dual generators as in the corresponding quantum problem. This represents quantum-to-classical correspondence. In the second part of the paper, we further extend the Lie algebraic approach to a wide class of interacting many-particle lattice models. A generalized Hubbard-Stratonovich transform is proposed and it is used to show that the thermodynamic partition function of a generic many-body quantum lattice model can be expressed in terms of traces of single-particle evolution operators governed by the dynamic Hubbard-Stratonovich fields. Finally, we derive Hubbard-Stratonovich dynamical systems for the Bose-Hubbard model and a quantum spin model and use the Lie-algebraic approach to obtain new non-perturbative dual descriptions of these theories.Comment: 25 pages, 1 figure; v2: citations adde

    LSST optical beam simulator

    Full text link
    We describe a camera beam simulator for the LSST which is capable of illuminating a 60mm field at f/1.2 with realistic astronomical scenes, enabling studies of CCD astrometric and photometric performance. The goal is to fully simulate LSST observing, in order to characterize charge transport and other features in the thick fully depleted CCDs and to probe low level systematics under realistic conditions. The automated system simulates the centrally obscured LSST beam and sky scenes, including the spectral shape of the night sky. The doubly telecentric design uses a nearly unit magnification design consisting of a spherical mirror, three BK7 lenses, and one beam-splitter window. To achieve the relatively large field the beam-splitter window is used twice. The motivation for this LSST beam test facility was driven by the need to fully characterize a new generation of thick fully-depleted CCDs, and assess their suitability for the broad range of science which is planned for LSST. Due to the fast beam illumination and the thick silicon design [each pixel is 10 microns wide and over 100 microns deep] at long wavelengths there can be effects of photon transport and charge transport in the high purity silicon. The focal surface covers a field more than sufficient for a 40x40 mm LSST CCD. Delivered optical quality meets design goals, with 50% energy within a 5 micron circle. The tests of CCD performance are briefly described.Comment: 9 pages, 9 figure

    Phase diagram for a Cubic Consistent-Q Interacting Boson Model Hamiltonian: signs of triaxiality

    Get PDF
    An extension of the Consistent-Q formalism for the Interacting Boson Model that includes the cubic QxQxQ term is proposed. The potential energy surface for the cubic quadrupole interaction is explicitly calculated within the coherent state formalism using the complete chi-dependent expression for the quadrupole operator. The Q-cubic term is found to depend on the asymmetry deformation parameter gamma as a linear combination of cos(3gamma) and cos^2(3\gamma) terms, thereby allowing for triaxiality. The phase diagram of the model in the large N limit is explored, it is described the order of the phase transition surfaces that define the phase diagram, and moreover, the possible nuclear equilibrium shapes are established. It is found that, contrary to expectations, there is only a very tiny region of triaxiality in the model, and that the transition from prolate to oblate shapes is so fast that, in most cases, the onset of triaxiality might go unnoticed.Comment: 18 pages, 19 figure

    A new low mass for the Hercules dSph: the end of a common mass scale for the dwarfs?

    Full text link
    We present a new mass estimate for the Hercules dwarf spheroidal galaxy (dSph), based on the revised velocity dispersion obtained by Aden et al. (2009, arXiv:0908.3489). The removal of a significant foreground contamination using newly acquired Stromgren photometry has resulted in a reduced velocity dispersion. Using this new velocity dispersion of 3.72 +/- 0.91 km/s, we find a mass of M_300=1.9^{+1.1}_{-0.8} 10^6 M_sun within the central 300 pc, which is also the half-light radius, and a mass of M_433=3.7_{-1.6}^{+2.2} 10^6 M_sun within the reach of our data to 433 pc, significantly lower than previous estimates. We derive an overall mass-to-light ratio of M_433/L=103^{+83}_{-48} M_sun/L_sun. Our mass estimate calls into question recent claims of a common mass scale for dSph galaxies. Additionally, we find tentative evidence for a velocity gradient in our kinematic data of 16 +/- 3 km/s/kpc, and evidence of an asymmetric extension in the light distribution at about 0.5 kpc. We explore the possibility that these features are due to tidal interactions with the Milky Way. We show that there is a self-consistent model in which Hercules has an assumed tidal radius of r_t = 485 pc, an orbital pericentre of r_p = 18.5 +/- 5 kpc, and a mass within r_t of M_{tid,r_t}=5.2 +/- 2.7 10^6 M_sun. Proper motions are required to test this model. Although we cannot exclude models in which Hercules contains no dark matter, we argue that Hercules is more likely to be a dark matter dominated system which is currently experiencing some tidal disturbance of its outer parts.Comment: 10 pages, 3 figures, Accepted for publication by ApJ

    Quantum reflection of ultracold atoms from thin films, graphene, and semiconductor heterostructures

    Full text link
    We show that thin dielectric films can be used to enhance the performance of passive atomic mirrors by enabling quantum reflection probabilities of over 90% for atoms incident at velocities ~1 mm/s, achieved in recent experiments. This enhancement is brought about by weakening the Casimir-Polder attraction between the atom and the surface, which induces the quantum reflection. We show that suspended graphene membranes also produce higher quantum reflection probabilities than bulk matter. Temporal changes in the electrical resistance of such membranes, produced as atoms stick to the surface, can be used to monitor the reflection process, non-invasively and in real time. The resistance change allows the reflection probability to be determined purely from electrical measurements without needing to image the reflected atom cloud optically. Finally, we show how perfect atom mirrors may be manufactured from semiconductor heterostructures, which employ an embedded two-dimensional electron gas to tailor the atom-surface interaction and so enhance the reflection by classical means.Comment: 8 pages, 4 figure
    • …
    corecore